Text Book for

INTERMEDIATE

Second Year

Mathematics

Paper - IIB

Coordinate Geometry, Calculus

Telugu and Sanskrit Akademi
Andhra Pradesh



Intermediate
Second Year

Mathematics
Paper - I1IB
Text Book

Pages : xvi+ 364 +iv +iv

© Telugu and Sanskrit Akademi, Andhra Pradesh

Reprint 2023

Copies : 24000

' )
ALL RIGHTS RESERVED

0 No part of this publication may be reproduced, stored in a retrieval system ortransmitted,
in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise without this prior permission of the publisher.

0O This book is sold subject to the condition that it shall not, by way of trade, be lent, resold,
hired out orotherwise disposed of without the publisher's consent, in any form of binding
or cover other than that in which it is published.

0 The correct price of these publication is the price printed on this page, any revised price
indicated by rubber stamp or by a sticker or by any other means is incorrect and is
unacceptable.

QO Published by Telugu and Sanskrit Akademi, Andhra Pradesh under the Centrally
Sponsored Scheme of Production of Books and Literature in Regional Languages atthe
University level of the Government of India in the Ministry of Human Resource

k Development, New Delhi. )

Published, Printed & Distributed by
Telugu and Sanskrit Akademi, A.P.

Price: Rs. 188.00

Laser Typeset by Pavan Graphics, Hyderabad

Published and Printed by
M/s GBR Offset Printers & Publishers
Surampalli, NTR Dist.

on behalf of Telugu and Sanskrit Akademi




o G
Vs et}

Y.S. JAGAN MOHAN REDDY CHIEF MINISTER AMARAVATI

ANDHRA PRADESH

MESSAGE

I congratulate Akademi for starting its activities with printing of textbooks from
the academic year 2021 — 22.

Education is a real asset which cannot be stolen by anyone and it is the foundation
on which children build their future. As the world has become a global village, children
will have to compete with the world as they grow up. For this there is every need for
good books and good education.

Our government has brought in many changes in the education system and more
are to come. The government has been taking care to provide education to the poor
and needy through various measures, like developing infrastructure, upgrading the skills
of teachers, providing incentives to the children and parents to pursue education. Nutritious
mid-day meal and converting Anganwadis into pre-primary schools with English as medium
of instruction are the steps taken to initiate children into education from a young age.
Besides introducing CBSE syllabus and Telugu as a compulsory subject, the government
has taken up numerous innovative programmes.

The revival of the Akademi also took place during the tenure of our government
as it was neglected after the State was bifurcated. The Akademi, which was started on
August 6, 1968 in the undivided state of Andhra Pradesh, was printing text books,
works of popular writers and books for competitive exams and personality development.

Our government has decided to make available all kinds of books required for
students and employees through Akademi, with headquarters at Tirupati.

I extend my best wishes to the Akademi and hope it will regain its past glory.

Y.S. JAGAN MOHAN REDDY




Dr. Nandamuri Lakshmiparvathi
M.A., M.Phil., Ph.D.

Chairperson, (Cabinet Minister Rank)
Telugu and Sanskrit Akademi, A.P.

Message of Chairperson, Telugu and Sanskrit Akademi, A.P.

In accordance with the syllabus developed by the Board of Intermediate, State
Council for Higher Education, SCERT etc., we design high quality Text books by recruiting
efficient Professors, department heads and faculty members from various Universities and
Colleges as writers and editors. We are taking steps to print the required number of these
books in a timely manner and distribute through the Akademi’s Regional Centers present
across the Andhra Pradesh.

In addition to text books, we strive to keep monographs, dictionaries, dialect texts,
question banks, contact texts, popular texts, essays, linguistics texts, school level dictionaries,

glossaries, etc., updated and printed and made available to students from time to time.

For competitive examinations conducted by the Andhra Pradesh Public Service
Commission and for Entrance examinations conducted by various Universities, the contents
of the Akademi publications are taken as standard. So, I want all the students and

Employees to make use of Akademi books of high standards for their golden future.

Congratulations and best wishes to all of you.

NMW“’”GQ e:m/m

Nandamuri Lakshmiparvathi
Chairperson, Telugu and Sanskrit Akademi, A.P.




J. SYAMALA RAO, LAS.,

Principal Secretary to Government

Higher Education Department
Government of Andhra Pradesh

MESSAGE

I Congratulate Telugu and Sanskrit Akademi for taking up the initiative of
printing and distributing textbooks in both Telugu and English media within a short
span of establishing Telugu and Sanskrit Akademi.

Number of students of Andhra Pradesh are competing of National Level for
admissions into Medicine and Engineering courses. In order to help these students
Telugu and Sanskrit Akademi consultation with NCERT redesigned their Textbooks

to suit the requirement of National Level Examinations in a lucid language.

As the content in Telugu and Sanskrit Akademi books is highly informative
and authentic, printed in multi-color on high quality paper and will be made available
to the students in a time bound manner. I hope all the students in Andhra Pradesh
will utilize the Akademi textbooks for better understanding of the subjects to compete

of state and national levels.

.

(J. SYAMALA RAO)
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WE, THE PEOPLE OF INDIA, having

'l solemnly resolved to constitute India into a

[SOVEREIGN  SOCIALIST SECULAR

94| DEMOCRATIC REPUBLIC] and to secure to all

its citizens:
JUSTICE, social, economic and political;

LIBERTY of'thought, expression, belief, faith

and worship;

EQUALITY of status and of opportunity; and

to promote among them all

FRATERNITY assuring the dignity of the
individual and the [unity and integrity of the
Nation];

i) IN OUR CONSTITUENT ASSEMBLY this |
|47 twenty-sixth day of November, 1949 do HEREBY

(\®%| ADOPT, ENACT AND GIVE TO OURSELVES
| THIS CONSTITUTION.
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Foreword

The Government of India vowed to remove the educational disparities
and adopt a common core curriculum across the country especially at the
Intermediate level. Ever since the Government of Andhra Pradesh and the Board
of Intermediate Education (BIE) swung into action with the task of evolving a
revised syllabus in all the Science subjects on par with that of CBSE, approved
by NCERT, its chief intention being enabling the students from Andhra Pradesh
to prepare for the National Level Common Entrance tests like NEET, ISEET etc
for admission into Institutions of professional courses in our Country.

For the first time BIE AP has decided to prepare the Science textbooks.
Accordingly an Academic Review Committee was constituted with the
Commissioner of Intermediate Education, AP as Chairman and the Secretary,
BIE AP; the Director SCERT and the Director Telugu Akademi as members. The
National and State Level Educational luminaries were involved in the textbook
preparation, who did it with meticulous care. The textbooks are printed on the
lines of NCERT maintaining National Level Standards.

The Education Department of Government of Andhra Pradesh has taken
a decision to publish and to supply all the text books with free of cost for the
students of all Government and Aided Junior Colleges of newly formed state of
Andhra Pradesh.

We express our sincere gratitude to the Director, NCERT for according
permission to adopt its syllabi and curriculum of Science textbooks. We have
been permitted to make use of their textbooks which will be of great advantage
to our student community. I also express my gratitude to the Chairman, BIE
and the honorable Minister for HRD and Vice Chairman, BIE and Secretary
(SE) for their dedicated sincere guidance and help.

I sincerely hope that the assorted methods of innovation that are adopted
in the preparation of these textbooks will be of great help and guidance to the
students.

I wholeheartedly appreciate the sincere endeavors of the Textbook
Development Committee which has accomplished this noble task.

Constructive suggestions are solicited for the improvement of this textbook
from the students, teachers and general public in the subjects concerned so
that next edition will be revised duly incorporating these suggestions.

It is very much commendable that Intermediate text books are being
printed for the first time by the Akademi from the 2021-22 academic year.

Sri. V. Ramakrishna I.R.S.
Director
Telugu and Sanskrit Akademi,
Andhra Pradesh




The Board of Intermediate Education, has recently revised the syllabus in
Mathematics for the Intermediate Course with effect from the Akademic year 2012-13.
Accordingly, Telugu Akademi has prepared the necessary Text Books in Mathematics.

In accordance with the current syllabus, the topics relating to paper II-B;
Coordinate Geometry and Calculus are dealt with in this book. They are presented
in eight chapters. Coordinate Geometry consists of five chapters: Circle, System of
Circles, Parabola, Ellipse, Hyperbola and Calculus is presented in three chapters,
Integration, Definite Integrals and Differential Equations.

Every chapter herein is divided into various sections and subsections. depending
on the contents discussed. These contents are strictly in accordance with the prescribed
syllabus and they reflect faithfully the scope and spirit of the same. Necessary
definitions, theorems, corollaries. proofs and notes are given in detail. Key concepts
are given at the end of each chapter, lllustrative examples and solved problems are in
plenty. and these shall help the students in understanding the subject matter.

Every chapter contains exercises in a graded manner which enable the students
to solve them by applying the knowledge acquired. All these problems are classified
according to the nature of their answers as I - very short, II - short and
III - long. Answers are provided for all the exercises at the end of each chapter.

Keeping in view the National level competitives examinations, some concepts and
notions are highlighled for the benefit of the students. Care has been taken regarding
rigor and logical consistency in the presentation of concepts and in proving theorems.
Alt the end of the text Book, a lisl of some Reference Books in the subject matter is
furnished.

The Members of the Mathematics Subject Committee, constituted by Board of
Intermediate Education, were invited to interact with the team of the Authors and
Editors. They pursued the contents chapter wise. and gave some useful suggestions
and comments which are duly incorporated. The special feature of this Book, brought
out in a new formal, is that each chapter begins with a thought mostly on Mathematics
through a quotation from a famous thinker. It carries a portrait of a noted
mathematician with a brief write-up.

In the concluding part of each chapter some relevant historical notes are appended.
Wherever found appropriate, references are also made of the contributions of ancient
Indian scientists to the advancement of Mathematics. The purpose is to enable the
students to have a glimpse into the history of Mathematics in general and the
contributions of Indian mathematicians in particular.

Inspite of enough care taken in the scrutiny at various stages in the preparation
of the book, errors might have crept in. The readers are therefore, requested to identify
and bring them to the notice of the Akademi. We will appreciate if suggetions to enhance
the quality of the book are given. Efforts will be made to incorporate them in the
subsequent editions.

Prof. P.V. Arunachalam
Chief Coordinator




Preface to the Reviewed Edition

Telugu Akademi is publishing Text books for Two year Intermediate in
English and Telugu medium since its inception, periodical review and
revision of these publications has been undertaken as and when there

was an updation of Intermediate syllabus.

In this reviewed Edition, now being undertaken by the Telugu Akademi,
Andhra Pradesh the basic content of its earlier Edition is considered
and it is reviewed by a team of experienced teachers. Modification by
way correcting errors, print mistakes, incorporating additional content
where necessary to elucidate a concept and / or a definition, modification
of existing content to remove obscurities for releasing the concept more

easily are carried out mainly in this review.

Not withstanding the effort and time spent by the review team in this
endeavour, still a few aspects that still need modification or change

might have been left unnoticed.

Constructive suggestions from the academic fraternity are welcome
and the Akademi will take necessary steps to incorporate them in the

forth coming edition.

We appreciate the encouragement and support extended by the Academic

and Administrative staff of the Telugu Akademi in fulfilling our assignment

with satisfaction.

Editors
(Reviewed Edition)
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Chapter 1

Cincle

“Learn to be silent. Let your quiet mind listen and absorb”

- Pythagoras

Introduction

Geometry has probably originated in ancient Egypt and flourished
in Greece, India and China. In the sixth century B.C., the systematic

development of geometry has begun.

Great mathematicians such as Thales, Menachmus and Archimedes
worked on the circle and a tangent to it during the fifth century B.C.
Thirty or forty years after the work of Aristotle, Euclid (a teacher of
mathematics of Alexandria in Egypt) collected all the known works and

arranged them in his famous book called “The Elements™.

Rene Descartes introduced a very important branch of
mathematics known as coordinate geometry which is a fusion of geometry
and algebra. In honour of Descartes the subject is named as Cartesian

Geometry.

The shape of awheel ofabicycle, a wheel of
bullock cart, bangle and some coins are of circular
shape (see Fig. 1.1). Inthis chapter, we deal with
the circle and obtain its equation. We derive the
equation of a chord, tangent and normal. Further
we obtain the parametric equations of a circle and
study some important topics related to circles.

Fig. 1.1

Archimedes
(287 -212B.C.)

Archimedes of Syracuse was an
ancient Greek mathematician,
physicist and  engineer.
Although little is known of his
life, he is regarded as one of the
leading scientists in classical
antiquity. He made several
discoveries in the fields of
mathematics and geometry.
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1.1 Equation of a circle, standard form, centre and radius

1.1.1 Definitions

A circleisthe set of points in a plane such that they are equidistant

froma fixed point lying in the plane (see Fig. 1.2).

The fixed pointis called the centre and the distance from the
centre to apoint on the circle is called the radius of the circle. Further,
twice of the radius of the circle is called its diameter. Inthe Fig. 1.2,

Cisthe centre of the circle and CP is its radius.

radius

YA P

centre

Fig. 1.2

1.1.2 Standard form

Now, we proceed to find the equation of circle in standard form and its other forms.

1.1.3 Theorem : The equation of the circle with centre O(0, 0) and radius r is x°>+y° =r

Proof: Apoint P(x,y)isonthe circle ifand only if the distance
between Pand Oisr(see Fig. 1.3).

PO =r

2

ie, x2+y? =2 (1)
whichistherequired equation of circle. The equation (1)1s called

standard form of'the circle.

1.1.4 Theorem : The equation of the circle with centre at
C(h, k) and radius r is

(x—h)>+ -k’ =r.
Proof: ApointP(x,y)is onthecircleifand only ifthe distance between
Pand Cisr(seeFig. 1.4).

ie, J(x—hP+(y-k? =r
ie, (x—h?2+ (y-k? =r?

which is the required equation of the circle.

YA

~
N

Fig.1.3

P(x,y)

Fig. 1.4



Inthe following, we obtain a necessary and sufficient condition for a second degree equation inx and y to
represent a circle. This facilitates usto decide by just looking at the coefficients whether the equation represents

acircle.

1.1.5 Theorem : The general equation of second degree

ax? + 2hxy + by? + 2gx + 2fy + ¢ =0 . (1)
where the coefficients a, h, b, g, f and c are real numbers, represents a circle if and only if
(i)a=b=+#0 (ii) h=0 and (iii) @ + f?—ac>0
Proof: Suppose that the equation (1) represents a circle. We shall prove
1) a=b+0 (i) h=0and (iii) g2 + f2 —ac > 0.
Let (o, B) bethecentre and 7 be the radius ofthecircle (1). Thenby Theorem 1.1.4, the
equation ofthe circle is
(=) + (==
ie., x> +y? 200 2By +al+pZ-r2=0 ..(2)

The equations (1) and (2) represent the same circle. Comparing the coefficientsin (1) and
(2)yweget h=0and
a _b 2g 2f c

1

T~ oo ~op - o2 1Pl ..(3)

a=>b follows fromequation (3).

=

Since, equation (1) isa second degreeand 2=0
a#0, b0, a=b=0
Further, fromequation (3), we have

« -2 _/ and
a

C
a’+pP-rt = = (4
a
2 2
S 2
Ths, 25 25 r° =
at b a
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Le., g+f%—ac>0 (- a*>>0)
Conversely, suppose that (i) a=b# 0 (i) k=0 (iii) g+ f%—ac>0, we shall

prove that ax?+2hxy + by?+2gx +2fy + ¢ =0 represents a circle.
Since a=b and h=0, the general equation (1) of second degree becomes
ax®>+ay*+2gx+2fy+c=0

2¢  2f ¢

XY+ X+ y+—=0  (a#0)
a a’ a
2 2 2 2
.. (H&] +(y+i] S
a a a a a

", (x+§J +(y+ij =( gzLj_ac] ..(5)
a a a

Since g%+ % —ac>0, the equation (5) represents a circle whose centre is (— -4 , — i] and
a a

g2+f2—ac
; .

radius is

1.1.6 Note

(i) x?+y?+ 2gx +2fy + ¢ =0 is considered as general equation of the circle.
(i) The centre of the circle x* + y° + 2gx + 2fy + ¢ = 0 is (—g, ).

(i) The radius of the circle x*> +y° + 2gx + 2fy + ¢ = 0 is ,/gz +f2 —c.

(v) If @ +1?—c=0then x’ +y? + 2gx + 2fy + ¢ = 0 represents a point circle. Inthis case the centre
itself is the point circle. The equation of a point circle having the centre at the origin is
¥ +32=0.

(V) The equation of a circle through (0, 0) will be in the form x> +y? + 2gx + 2fy = 0.

(Vi) The equation of a circle having the centre on the X-axis will be in the form of
x?+y?+2gx +c=0/(-+ y-coordinate of the centre is zero).

(vii) The equation of a circle having the centre on the Y-axis will be in the form of

x° 432+ 2fy + ¢ =0 (- x-coordinate of the centre is zero).



[5]

(viii) Two or more circles are said to be concentric if their centres are same.

(iX) The equation of a circle concentric with the circle x* + y° + 2gx + 2fy + ¢ = 0 will be in the form of
x2 432 + 2gx + 2fy + ¢’ = 0 where c' is any constant.

(x) Iftheradius of acircleis I then it is called a unit circle.

1.1.7 Solved Problems

1. Problem: Find the equation of circle with centre (1, 4) andradius 5.
Solution : Here (h,k)=(1,4) and » = 5. Therefore, by Theorem 1.1.4, we have
(x =12+ -4 = 5

e, x2+)?-2x -8 -8 = 0.
2. Problem: Find the centre and radius of the circle x° +y? + 2x —4y —4 = 0.
Solution : Here 2g=2; 2f =—4; c=-4
g=1, f=-2, c=-4

Centre (—g, —f) = (-1,2)and

radius = g2+ f2—¢c = 1 + 4 — (—4) = 3.

3. Problem: Find the centre and radius of the circle 3x* + 3)? —6x + 4y —4 = 0.
Solution: First wereduce the given equation to a circle in general form. Dividing the given equation of circle
by 3, we get

X2+ 2—2x+iy— 4 =0
Y 373

| &
| &

Hence 2g=-2;2f=

, C

wlN
wls

Le., g=-1; f==;c=-

2
- Centre=(-g, -f) =(1, —g)andradius w/g2+f2—c = /1+%+% =§.

4. Problem : Find the equation of the circle whose centre is (=1, 2) and which passes through (35, 6).
Solution: Let C (=(—1,2)) be the centre of the circle (see Fig. 1.5).

Since (5, 6) is a point on the circle, the radius of the circle is

JG+D2+(6-2)2 =452
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Hence the equation of the required circle is
(e D2+ (v =27 = (¥52)°
i.e., x?+y%+2x -4y —47=0.
5. Problem : Findthe equation of the circle passing through (2, 3) and
concentric with the circle
x2+y?+ 8+ 12y +15=0. (1)

Solution:  Let the equation of required concentric circle be
x2+y?+8x+12y+c'=0(ByNote 1.1.6(ix)). Ifit passes through

(2,3) (seeFig. 1.6) we have ﬁ\“) N

4+9+16+36+¢' =0

65+c'=0
¢ =-65.
Hence the required circle is x*+3%+ 8x+ 12y —65=0. Fig. 1.6

6. Problem: From the point A(0, 3) on the circle x* + 4x + (y — 3)> = 0 a chord AB is drawn and
extended to a point M such that AM = 2AB. Find the equation of the locus of M.
Solution: Let M=(x",y")
Giventhat AM=2AB
AB+BM=AB+AB
AB=BM AY
1e., Bismidpoint of AM.

x Y43
B_(z’ 2 )

Bisapointonthe givencircle

(seeFig.1.7)
2 , , 2
X v +3
+4| — |+ -3| =0 i
) ( 2) ( > ) Fig. 1.7

ie., X+ y?+8x -6y +9=0.

Hence the locus of M is x2+)2+8x—6y+9=0, whichisacircle.



7. Problem: Ifthe circle x* +y? + ax + by — 12 = 0 has the centre at (2, 3) then find a, b and the radius
of the circle.

Solution : The equation ofthe circle is

x> +y*+ax+by—12=0. (1)
) a b
The centre of (1) is 575
a b
-——,——1=2,3
o (22

= a=-4, b=-6.

The equation (1) becomes x2 + % —4x— 6y —12=0, hence g=-2, f=—3 andc= —12.

Therefore, theradius of the circleis /g% + f2 —¢ = \[4+9—(-12) = 5.
8. Problem : Ifthe circlex? +y? —4x + 6y +a =0 has radius 4 then find a.

Solution: Comparing the given equation of circle with the general form of equation ofa circle, we have
2g=—4; 2f=6; c=a.
Le., g=-2; f=3; c=a.

Given that the radius of the circle is 4.

\/g2+f2—c =4

Le, 449-c =4
Le., V13—a =4
1e., a=-3.

9. Problem : Findthe equation of the circle passing through (4, 1), (6, 5) and having the centre on the line
Ix+y—-16=0.

Solution: Letthe equation ofthe required circle be
x2+)2+2gx+2fp+c=0 (1)
Since it passes through (4, 1), we have
16+1+8g+2f+c=0
i.e., 17+8g+2f+c=0 .. (2)
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Similarly since (6, 5) lies on (1), we obtain
36+25+12g+10f+c=0
Le., 61+12g+10f+c=0 ..(3)
Giventhat the centre of (1) lieson4x+y—16=0

49+ ()=16=0

4g+ F+16=0 .. (4)
Solving the equations (2), (3) and (4) for g, /'and c we get
g=-3, f=—-4 and c=15

Thus the equation of the required circle is
x> +)?—6x—8y+15=0.
10. Problem : Suppose apoint (x,, y ) satisfies
x> +)?+2gx+2fp+c=0 .. (1)
then show that it represents a circle whenever g, fand c are real.
Solution : Comparing the given equation with general equation of second degree we have x2 coefficient =12
coefficient and the coefficient of xy=0. The given equation represents a circle if g%+ *_¢ >0.
Since (x,y,)isapointon (1), we have
x12+y12+2gx1+2fj/1+c=0 ..(2)
Now g +f —c =g +f +xP+yl+2gv + 2 = (v, + P+, +/)20.
Since g, fand c are real by Theorem 1.1.5 equation (1) represents a circle.

1.1.8 Theorem

(i) Ifg>—c>0thentheintercept made on the X-axis by the circle x> +)% +2gx+2fy+c=0is 2,/g% - ¢ .

(i) If /2—c>0thenthe intercept made on the Y-axis by the circle x2+)2+2gx+2fy+c=01s 2/ f> —c.
Proof A
(1) The points of intersection of the given circle

x> +)?+2gx+2fp+c=0 (1)
and y=0(i.e., X-axis equation) ..(2)

are the common points of (1) and (2).

Put y =0 in (1) to get the abscissae of the points of

intersection. The abscissae of common points are the roots of
x> +2gx+c=0 ..(3) Fig. 1.8(a)



]

The discriminant of this equation is 4(g2 - ¢). Since g2 —c¢>0, the equation (3) has two real and distinct
roots, say x; andx,. Suppose the points of intersectionare A, (x,, 0) and A,(x,, 0) (see Fig. 1.8(a)). We have

toprovethat A | A,=2 g2 -cC.

Since x| and x, are the roots of (3), we have

x; +x, = -2g,
x| X, =c.
Consider (x; - xz)2 = (x, + xz)2 —4x, x,
= (2P —4c
= 4(g-0)

Taking the square root, we get

) = x| = 2\g°—c
1e., A1A2 = 211g2 —

Thus the intercept made by (1) on X-axisis 2 g2 —-c.
(i)  Thepointsofintersection of the given circle
x2+)2+2gx+2f+c=0 .. (1)
and x =0 (theequation of Y-axis) .. (4)
are the common points of (1) and (4).

Put x=01n(1)to getthe ordinates ofthe points of intersection. The ordinates of common points are the
roots of

YV +2f+c=0 ..(5) A\
The discriminant of this equation is 4(]‘2 —c¢). Since B,
f2 —c>0the equation (5) has two real and distinctroots say y,

andy,. Suppose the points of intersection are B,(0,y,) and

B,(0, y,) (see Fig. 1.8(b)). We have to prove that B]
B,B,=2\f*-c- 0 >X
Since y, and y, are the roots of (5) we have Fig. 1.8(b)
Y1ty =2,
Yy, =c.
Consider (yl—yz)2 =(yl+y2)2—4y1y2
= fp -4

= 4(fz—c).



b=y, = 2 f*-c.

ie., BB, = 2¢/f?—c.

Thus the intercept made by (1) on Y-axisis 24/ f 2_c.
1.1.9 Note

() &€-c=0= A,A,=0= A, A,arecoincidenti.e., the
X-axis touches the circle in two coincident points. Thus

the X-axis touches the circle at the point of coincidence
(see Fig. 1.9)

(i) f?-c=0= B,B,=0= B, and B, are coincident
i.e., the Y-axis touches the circle in two coincident points.

Thus Y-axis touches the circle at the point of coincidence

(see Fig. 1.10)

(i) If g° —c < 0 then the circle (1) does not meet the X-axis.
(iv) If f? —c <0 then the circle (1) does not meet the Y-axis.
1.1.10 Example

Letus find the equation of the circle which touches the X-axis
atadistance of 3 from the origin and making intercept of length 6 on
the Y-axis.

Letthe equation of the required circle be

¥2+)2+2gx+2f+c=0 . (1)
This meets the X-axis at(3,0) (see Fig. 1.11).
(3,0)isapointon (1)

. 9+0+6g+0+c=0

Le., 6g+c=-9
ByNote 1.1.9(1), we have
g?—c=0
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YA
O > X
Fig.1.9
YA
> X
Fig.1.10
YA
N -
ol @0 i’
Fig. 1.11
.. (2)

(3



Adding(2)and (3) we get
g +6g+9=0
ie., (g+3)*=0
e, g=-3
From (3) and (4), we get
c=9

Given that the intercept on Y-axis made by (1)is 6.

Therefore by Theorem 1.1.8(ii) we have
2 fP-c=6
ie, 2¢f2-9=6

e, +Jf'-9=3

ie, f?-9=9
ie, f%2=18.
Hence f= i3\/§.

(4

. (5)

Since g=-3, /=43 V2 and c= 9, we have two circles satisfying the hypothesis, these circles are

2412 —6x+632y+9=0 and x2+12 - 6x— 62 y+9=0.

1.1.11 Definition

by AB (see Fig. 1.13)

|

Fig. 1.12

If A and B are two distinct points on a circle then
(1) theline AB through A and B is called a secant (see Fig. 1.12)
(i) Thesegment AB,thejoinof A and B is called a chord and the length of the chord is denoted

YN

Chord

Fig.1.13

1.1.12 Equation of a circle with a given line segment as diameter

In this section, we derive the equation of circle whose diameter extremities are given.
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1.1.13 Theorem : The equation of the circle whose diameter
extremities are (x,;,y,;) and (x,, y,) is

(x—x)) (x=x,) + (¥ -y) -y, =0. Y PG, )
Proof: LetA=(x,,y,), B=(x,, y,) and C be the centre of the

circle (see Fig. 1.14).
B(xz, J’z)

LetP(x,y) be anypoint on it other than Aand B. Join A and

B, A and P and also P and B. We know that 5 >X
Fig. 1.14

APB = 90°.
1e., thelines APand BPare perpendicular
(slope ofAP) (slope of BP) =—I.

O-y)  O-y) _
(x—x1)  (x—x2)

Le., x=x)(x=—x)+@-y)(»-y,)=0. (1)

Also clearlyAand B satisfy (1). Therefore anypoint P(x, y’) on the circle satisfies equation(1). Conversely

Le.,

if a point P(x, ) satisfies (1) then APB = 90° and hence P lies on the circle.

Thus (1) is the equation ofthe required circle.

1.1.14 Solved Problems

1. Problem : Find the equation of the circle whose extremities of a diameter are (1, 2) and (4, 5).
Solution : Here (x,y,)=(1,2) and (x,,y,) = (4, 5).
By Theorem 1.1.13, the equation ofthe required circle is
x-DHx-4)+@-2)y-5) =0.
Le., x2+)2—5x—Ty+14=0.

2. Problem : Find the other end of the diameter of the circle x> +y° —8x—8y + 27 = 0if one end of it is

(2, 3).

Solution : Let A(2, 3) and AB be the diameter (see Fig. 1.15)

ofthe circle B
x> +)?—8x—8y+27=0.

YA

The centre ofthe circle Cis (4,4). Letthe otherend B of
the diameter be (o, ). Then, C is the mid point of AB. A




2+a 3+P
2 2

, j =4, 49
S0 =6 and B=35.
.. The other end of the diameter is (6, 5).
1.1.15 Equation of circle through 3 non-collinear points
We derive a formulato find the equation of a circle through three given points in the next section.

1.1.16 Theorem : The equation of the circle passing through three non-collinear points P(x, y,),
O(x, y,) and R(x;, y;) is

xx oy 1 aq yn 1
Xy oy 1 (x* +y2)+ ¢y, lx
x3 yz 1 ;s yzo 1
X ¢ 1 X1 N €
+1xy ¢ lly+|xa ¥y ¢]=0
x3 o1 X3 Y3 G
where ¢, = —(x?+y2) (i=1,2,3).
Proof': Letthe equation of the circle passing through the points P, Q and R be
x2+)2+2gx+2fy+c=0. .. (1)
Since the points P,Q and R are lying on (1), we have
x12+y12+2gx1+2ﬁ/1+c=0 .. (2)
x22+y22+2gx2+2fj/2+c=0 ..(3)
X3 +y3+2gx, +2fp;+c=0 . (4)
Let  2g=a, 2f=b and c¢,=-(x?}+y?) (i=1,2,3). ..(5)
Theequation (2), (3) and (4) can be written as
ax, +by, tc=c, ... (6)
ax, +by, tc=c, .. (7)
ax, + by, tc=c, .. (8)
x|l
Let A =|%¥2 Y2 1| . ThenA# OsinceP, Q, R are non-collinear.

x5 y3 1



€1 N
Consider |[¢; ¥,
3 )3

Similarty

and

1 ax; +by, +c Vi
I| = |axy+by, +¢
1 axy+by;tc 3
ax y 1 by,
= |axy y, 1|+ |by,
axy y3 1 by;
=aA+0+0(--
aq » 1
6 »n ol
2g=a- G oy 1
A
x ¢ 1
x, ¢ 1
X ¢ 1
2f = b = A
Xy Y ¢
Xy Yo Gy
X3 Y3 G
<" A
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1
1
1
n 1 c y 1
v, 1j+|c y, 1
vz 1 c y3 1

two column elements are proportional)

- (9)

..(10)

(11

Substituting the values of g, fand ¢ in (1), we get the equation of the circle passing through the points P,

no1 €

v, 1 (x> + y2 )+| ¢y

3 1 €3
X1 aq 1

+lxy ¢ 1y +
x3 ¢ 1

N
2
3

X1
X2

X3

1
1(x
1

N
)
Y3

9
%)

3

QandRas
X1
X2
X3
1.1.17 Note

() The centre of the circle passing through three non-collinear points P(x,y ), Q(x,, y,) andR(x;, y ;)



G N 4 oa |

¢ v x, ¢ 1

. e X, ¢ 1
o oy 1 x oy 1
22X v 1 5y X, y, 1
Xy 1 Xy 1

(from equations (9) and (10) of Theorem 1.1.16) where c; = — (xl.2 +yl.2) (i=12 3).

(i) Wecanalso findthe equation of the circle passing through three non-collinear points in the following
ways.

(a) Firstwesuppose that the equation of the circle passing through the given three points P, Q and

R in general form. Substitute the coordinates of P, Q and R in this equation. We get three
equations involving three unknowns g, f and c. Solve them for g, f and c. Substitute these
values in the supposed equation, we get the required circle.

(b) Inthis method, we suppose that the centre of the circle passing through the points P, Q and R as
C(a, b). Construct the equations from CP = CQ and CP = CR. These two equations yield two
simultaneous equations in a and b. Solve them for a and b. Thus the centre of the required circle
is known. Next find the radius of the circle (i.e., CP). Now we can write the equation of
required circle using

(x —h)? + (v —k)? = r* where (h, k) is the centre and r is the radius of the circle.

(c) In this method, first we find the equations of any two sides of PQ, QR and RP. Next find the
intersection of perpendicular bisector of two sides. It is the centre of required circle. The
distance from the centre to any point of three given points is the radius. We compute this radius.
Using (x —h)? + (y —k)? = ¥°, we can find the equation of required circle.

(i) P(x;,y,), O(x,,¥,), R(x;,y;) and S(x,,y,) aresaid to be concyclic if these points lie on the same
circle.

1.1.18 Example

Let us find the equation of the circle passing through P(1,1), Q(2, —1) and R(3, 2).

We find the equation of the required circle using Theorem 1.1.16.

Here  (xp,y)) = (1, 1); (X 3) =2, =1);  (x3,»3)=(3,2) and
¢ = ~(f+yD) =-(1+1)=-2
¢y = ~(xf+y) = —-(4+1)=-5
;= —-(x3+yf)=-9+4)=-13



By Theorem 1.1.16, the equation of circle is

1 1 1 -2
2 -1 1| +yH+] -5
3 2 1 -13
1 -2 1 1
+ (2 -5 1|y +(2
3 -13 1 3

1e., 5(x2+3%)—25x—5y+20=0

Le., x> +)? —5x-y+4=0.
Other methods

This problem can also be solved in the following ways.

Method 1 (Using Note 1.1.17ii(a))

Letthe equation of the circle through P, Q and R be

x> +)?+2gx+2fp+c=0.

Since it passes through P(1,1), Q(2,—1) and R(3,2), we have

2+2g+2f+c =0
5+4g -2f+c=0
13+6g+4f+c=0

Solving the above three equations forg, fandcwe get g = — %, f=

valuesin (1), we get the equation ofthe required circle as

x> +)?=5x—y+4=0.
Method 2 (Using Note 1.1.17ii(b))
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(D)

- % and c=4. Substituting these

Let C = (a,b)bethecentre oftherequired circle. Then CP=CQ and CP=CR.

CP=CQ = CP?=CQ?
=
= 2a—-4b=3
CP=CR =  CP?=CR?
=
=  4a+2b=11

(a—172+(b-1)7? = (a-2)*+(b+1)?

(@172 +(b-1y=(a=3)*+(b-2)

- (2)

(3



1
Solving (2) and (3) we get a= 3 and b= 5 Now the radius ofthe required circle is

5V 1Y 5
=, 1-=] +1-=| =,]=
Hence the equation of the required circle is
2 2 2
2) U2 2
ie, x> +)2—S5x—y+4=0.

Method 3 (Using Note 1.1.17 ii(c))

The perpendicular bisector of Q_R is

x+3y-4=0 (%)
Similarly the perpendicular bisector of PR is

4x+2y—-11=0 ..(5)

The point of intersection of (4) and (5) is the centre of the required circle. Hence the
centre is § s l say C.
2 2
The radius of the required circle is CP or CQ or CR.
2
Hencetherequired circle is )
FEN A RN R B
2] 1772 2
1e., x2+)?2—5x—y+4=0.
1.1.19 Solved Problems

1. Problem : Find the equation of the circum-circle of the triangle formed by the line

ax + by +c=0 (abc # 0), and the coordinate axes. YA
Solution : Letthe line ax+ by+c=0 cutthe X, Y axes N
atAand Brespectively (see Fig. 1.16), the figure is drawn
for—£>0 and—£>0.
a b S
o >X
ax+by+c=0
We have to find circle passing through A, B and the origin (0, 0). Fig.1.16
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Clearly A= (—E, Oj and B= (O, —2) :
a b

Letthe equation of required circle be
x2+)2+2gx+2f+c'=0 .. (1)
Since (0,0)isapoint lyingon (1), we have
c'=0 .. (2)

Since the points Aand B are also lyingon (1), we have

2
c—2+0+2g(—£j+0+0=0
a

a

2

C C
and 0+—+0+2f|——|+0 =0

b? b
) c c
1e., =— and f=_—_.

& 2a f 2b

Substituting g, fand ¢’ valuesin (1) we get
Py +Sx+ Sy =0

ie., ab(x?+y?)+ c(bx+ay)=0, which s the required circle.
2. Problem : Find the equation of the circle which passes through the vertices of the triangle
Jormedby L, =x+y+1=0, L,=3x+y—-5=0and L;=2x+y-5=0.
Solution : Suppose L, L,;L,, Lyand L,, L, intersectat A, B and Crespectively.
Consider a curve whose equation is
k(x+y+1)Bx+y-=5)+IB8x+y-5)2x+y—=5)+m2x+y—-5)(x+y+1)=0 .. (1)

We can verify the fact that this curve passes through A, Band C.

Hence we find &,/ and m such thatthe equation (1) represents a circle. Ifthe equation (1)

represents a circle we have (by Theorem 1.1.5).
(i) coefficient ofx?=coefficient of
3k+6l+2m=k+1+m
ie., 2k+51+m =0. .. (2)
(i) coefficientof xy=0
4k+51+3m=0. ..(3)



Applying cross multiplication rule for (2) and (3) we get
5 1 2 5
5>< 3 >< 4>< 5

< L m

15-5 4-6 10-20

k _ L _m
LE. 10 -2 -10
. K L m
ie., T - 20

5 -1 -5

Hence the required equation is
Sx+y+1)Bx+y-5)-13x+y-52x+y-5)-52x+y-5)(x+y+1) =0
Le., x2+)%=30x— 10y +25=0.

3. Problem : Find the equation of the circle which passes through the vertices of the triangle formed by

Y.
b

x=0,y=0and §+
Solution : Observe that the vertices ofthe triangle are (0, 0), (@, 0) and (0, b)
Let the equation of the circle be x2+% +2gx+2fy+¢=0 (1)
Since, the circle (1) passes through (0, 0) (a, 0) and (0, b),

wehave ¢=0, a*+2ga=0and b*>+2fb =0

b
Therefore, c=0, g TQ and f By

Hence, the required circle equationis x2 + % —ax — by=0

1.1.20 Parametric equations of a circle

Parametric equations ofa circle describe the coordinates of a point on the circle in terms ofa single

variable 0 (say). We call this single variable as parameter. Now we derive the parametric equations ofacircle.
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1.1.21 Theorem : The parametric equations of a circle with centre (h, k) andradius r (> 0) are given by

x=h+rcos0

yv=k+rsin0

where 0<0<2m.
Proof: Letthe centre ofthe circlebe C. s

Then C=(h, k). Let P(x, y) be any point on the circle with X
the centre C and radius . Draw CX’ parallelto OX and CY' R
parallelto QY . Join C and P. Note that CP=r. X

Fig. 1.17
Let PCX’ = 6.

Draw aline from Pparallel to Y-axis meeting CX'atNand meeting X-axisat M.

Then OM =x; PM =y (see Fig. 1.17, itis drawn for the case ~2> 0, k>0).

Now draw a line parallel to Y-axis from C meeting the X-axisatD. Then OD=#;

CD=k. Thetriangle CPNisaright angled triangle.

 cosgo N _DM _ OM-OD _x-h
Cp Cp r
1e., x—h = rcosH.
x=h+rcosO . (D)
Consider sin@ = PN_PM-MN _PM-CD _y-k
CP CpP CP r
1e., y—k=rsin
y=k+rsin® ..(2)

Hence the equations (1) and (2) constitute the parametric equations of a circle where 0<0<2m.

Conversely if x=h+rcos®, y=k+rsin® where 0<0<2m then (x—h)>+(y—k)? = 2.
Therefore the point (x, y) lies on the circle. Hence equations (1)and (2) are the parametric equations ofthe

circle where 0<6 <2m.

1.1.22 Note

(1) If the centre of the circle is the origin, then parametric equations of the circle having radius r is

x=rcos 6, y=rsin 0 where()0 < 0<2m.



(i) Thepoint (h+rcos 0, k+rsin0,) is referred as the point 0, (a particular value of the parameter
0) on the circle having the centre (h, k) and radius r.

1.1.23 Solved Problems

1. Problem : Obtain the parametric equations of the circle x* +y? = 1.

Solution : Here the centre of the circle is (0, 0) and

radiusis =1 (see Fig. 1.18)

.. The parametric equations of the circle x*+%=1 / P(cos 6, sin 6)
1
are 5
!

x=1.cosO=cos0
y=1.sinO=sin6, 0<0<2m

(byNote 1.1.22(1))

Note that every point on this circle can be expressed as (cos 0, sin 0).

2. Problem : Obtain the parametric equation of the circle represented by
x2+y° + 6x+8y—96 =0.

Solution : Here the centre (4, k) of the circle is (-3, —4) and radius

r=49+16-(-96) =11.

. By Theorem 1.1.21, the parametric equation of the given circle are
x=-3+11cos6
y=-4+11sin6

where 0<60<2m.

Exercise 1(a)

I. 1. Findtheequations ofcircles with centre C and radius » where
i) C=(2,-3), r=4 (i) C=(-1,2), r=5
@) C=(a,—b), r=a+b
(iv) C=(-a,=b), r=+a*-b* (la|>|b])
(v) C=(cosa,sina), r=1. vi) C=(-7,-3), r=4
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(1) (5 4y
(vi) C= —5,— j,r—S (vi) C= 273 , r=6

(ix) C=(1,7), rzg x) C=(0,0), r=9.

Find the equation ofthe circle passing through the origin and having the centre at (—4,-3).
Find the equation of the circle passing through (2,—1) having the centre at (2, 3).

Find the equation of the circle passing through (-2, 3), having the centre at (0, 0).

Find the equation of the circle passing through (3, 4) and having the centre at (-3, 4).

Find the value ofaif 2x%+ay? —3x +2y— 1 =0 represents a circle and also find its radius.

Nk wN

Find the values of a, b if ax2+ bxy+3)?—5x+2y—3=0representsacircle. Also find the radius and
centre of the circle.

8. If x>+y?+2gx+2fy—12=0represents acircle with centre (2, 3) find g, f and its radius.

9. Ifx2+)?+2gx+2fy=0representsacircle with centre (4, —3) then find g, 'and the radius of the
circle.

10. If x2+y%—4x+6y+c=0represents a circle with radius 6 then find the value ofc.

11. Findthe centre and radius of each of the circles whose equations are given below :
(i) x*+)>—4x—-8y—-41=0 (i) 3x>+3)>-5x—6y+4=0
(i) 3x>+3)>+6x—12y—-1=0 (iv) x*+y*+6x+8-96=0
(V) 2x*+2)?—4x+6y-3=0 (Vi) 2x*+2)?=3x+2y—-1=0

(i) VI+m? (2+)?) —2cx—2mey=0
(vii) x?+3?+2ax —2by +b*=0.

12. Findthe equations of the circles for which the points given below are the end points of a diameter.

M (1,2), (4,6) (i) (=4,3),(3,-4)
(i) (1,2),(8,6) @) (4,2), (1,5)
W (7,-3),3,5) i) (1,1, (2,-1)
(vi)) (0,0),(8,5) (vii) (3, 1)(2,7)
13. Obtainthe parametric equation of each ofthe following circles.
@) x*+y*=4 (i) 4(x*+y*)=9
(i) 2x2+2)2=7 (iv) (x=3)*+(y—4)>=8>%

(V) X2+ —4x—-6y—12=0 i) xX>+y?—6x+4y—12=0



II. 1.

L. 1.

Ifthe abscissae of points A, B are the roots of the equation x2 +2ax — b% =0 and ordinates of A, B are

roots of )2 +2py —g*=0 then find the equation of a circle for which AB isadiameter.

(i) Showthat A(3,-1)lies onthe circle x>+)%—2x+4y=0. Also find the other end of the
diameter through A.

(i) Show that A(=3,0)lieson x>+ +8x+12y+15=0and find the other end of diameter
throughA.

Find the equation ofa circle which passes through (2,—3) and (-4, 5) and having the centre on
4x+3y+1=0.
Find the equation of a circle which passes through (4, 1), (6, 5) and having the centre on
4x+3y—-24=0.
Find the equation of a circle which is concentric with x2+ )2 — 6x — 4y — 12 =0 and passing through
(-2,14)
Find the equation of the circle whose centre lies on the X-axis and passing through (-2, 3)and (4, 5).
IfABCD is asquare then show that the points A, B, Cand D are concyclic.
Find the equation of circle passing through each of the following three points

1) 3,4),(3,2),(1,4) (i1) (1,2),(3,-4),(5,-6),
(iii) (2,1),(5,5),(=6,7), (iv)(5,7),(8,1),(1,3),

(v) (0,0),(2,0),(0,2).
(1) Findtheequation ofthe circle passing through (0, 0) and making intercepts 4, 3 on X-axis and

Y-axis respectively.

(i) Findthe equation ofthe circle passing through (0, 0) and making intercept 6 units on X-axis and
intercept4 units on Y-axis.

Show that the following four points in each of the following are concyclic and find the equation of the

circleon whichthey lie.
(1) (19 1)’ (_69 0)’ (_29 2)’ (_23 _8) (11) (la 2) (39 _4)a (59 _6)a (199 8)
@) (1,-6)(5,2),(7,0),(-1,-4) aw) 9,1),(7,9)(-2,12),(6,10)

If(2,0), (0,1) (4,5)and (0, ¢) are concyclic then find c.

5. Findthe equation of the circum—circle of the triangle formed by the straight lines given in each of the

following :

(i 2x+y=4, x+y=6, x+2y=5

@ x+3y—-1=0, x+y+1=0, 2x+3y+4=0
@) Sx—-3y+4=0, 2x+3y—-5=0, x+y =0
i) x—-y—-2=0, 2x-3y+4=0, 3x—y+6=0
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6. Show thatthe locus ofthe point of intersection of the lines x cos .+ ysin o =a,
xsino—ycoso=b (o is aparameter)isacircle.

7. Show that the locus of a point such that the ratio of distance of it from two given points is constant
k(# +1)isacircle.

1.2 Position of a point in the plane of a circle-Definition of a tangent

In earlier classes, we have learnt that the tangent at any point of a circle is a straight line which meets the
circleatthat point only. The pointis called the point of contact. This tangent is perpendicular to the radius drawn
from the centre to the point of contact. In this section we give another definition ofa tangent to the circle using the
limit concept. Using this definition we find an equation of tangent at any point in section 1.3. We also learn the
position of a point with respect to a circle and power of a point. Further, we define the length ofatangent froma
pointand obtain a formula for it.

1.2.1 Notation
Now we introduce certain notations that will be used in the rest of this section and subsequently.
(i) Theexpression x2+)2+2gx +2fy+cis denoted by S
ie, S=x2+)y>+2gx+2f +c.
(i) Theexpression xx,+yy,+g(x+x)+Ay+y)+c isdenotedby S,
Thus S, =xx, +yy, tglx+x)+Ay+y)+ec,
Sz =xx, t )y, +gx +x2) +Ay +y2) +c.
(i) Theexpressionx,x;+y,y;+g(x;+x)+Ay;+y;)+cisdenotedby S (i,j=1,2,3, ...) For example
Sip = XXyt Yy gy +xy) H Ay, )t M
S, = xlz+y12-|r2gx1 +2fy, +e.
1.2.2 Position of a point with respect to a circle

A circle inaplane divides the plane into three parts namely

(1) theinterior ofthe circle (see Fig. 1.19(a))

(1) thecircumference whichisthecircularcurve (see Fig.1.19(b)) 0 >X
(i) theexterior ofthe circle (see Fig. 1.19(c)). Fig. 1.19(a)
YA v
Circumference — .

= - P CRT
EXICTTOT O TNC CITCIC

>X > X
(0]
Fig. 1.19(b) Fig. 1.19(c)




1.2.3 Theorem : Let S =0 be acirclein aplane and P(x,, y ) be any point in the same plane. Then
(i) Plies inthe interior of the circle < S, < 0.
(i) Pliesonthecircle < S, =0.
(ii) P lies in the exterior of the circle < S;;> 0.

Proof:Let S = x2+)2+2gx+2f+c=0 bethe equation of the given circle and P(x,,y,) beany pointin the

plane. Then C(—g, —f)isthe centre and 7= 4/ g2 + f 2 _¢ istheradius ofthe circle.

(i) Pliesintheinterior ofthe circle Y’P
= CP<r(seeFig.1.20)
= CP? <2
S QP R -c
= x%+y12+2gx1+2ﬁ/1+c<0 0 >X
IEN S,; <0. Fig. 1.20

(i) Pliesonthecircle YA
& CP=r(seeFig.1.21) P
& CP? =2
e (Pt H) =gt e
= x2+yd+2gx, +2fy, +c=0 0 > X
= Sll =0. Fig.1.21

(iii) Pliesintheexterior ofthe circle N .
= CP>r(seeFig.1.22)
& CP2> 2,
o (@Rt @ o
= x%+y12+2gx1+2ﬁ/1+c>0 § > X
IEN S,;>0. Fig. 1.22

1.2.4 Example

Let S = x?+ 1%+ 6x + 8y — 96 = 0 be the equation of circle and P(1, 2) be a point in the plane.
Here (xlayl):(laz)
S, =12+22+6(1)+8(2)— 96 =—69.



| Mathematics - IIB |

Since S, <0,by Theorem 1.2.3, the point (1,2)is in the interior of the circle. Note that the centre of the

circleis (—3,—4)andradius »=11. The distance from the centre to the point (1,2)1s /52 whichisless than the
radius 11. Hence, the point (1, 2) is inside the circle.

1.2.5 Definition

Let P be any point on a given circle and Q be a neighbouring point of P lying on the circle.

Join P and Q. Then @ is asecant (see Fig. 1.23(a)).
YN YN

IL
Fig. 1.23(a) Fig. 1.23(b)

The limiting position of the line (secant) PQ when Q — P along the circle, is called the tangent
at P (see Fig. 1.23(b)).

Explanation
Let the equation of E be L, =ax+by+c,=0. Let Q, be another neighbouring point on the
circle such that PQ, <PQ (seeFig. 1.24). Let the equation of PQ, A Ly L,
be L, =a,x+byy+c,=0.
Similarly choose Q, on the circle suchthat PQ, < PQ),.
Let the equation of ﬁ be Ly =ax+byy+cy=0. Let the
limit of L,, L,, Ly, ..., (straight line equations) be

L =ax+by+c=0asQ — Palongthecircle. Then L is called the 0

tangent to the circle at P. Fig.1.24
YN

1.2.6 Length of tangent
If Pis an external point to the circle S = 0 and

i P
PT is the tangent from P to the circle S = 0 then PT
is called the length of the tangent from P to the
circle (see Fig. 1.25) T S
O Cd

Fig. 1.25



1.2.7 Power of a Point

Suppose S = 0 is the equation of a circle with centre C andradius r. Let P(x,,y ) be any point in the
plane. Then CP? =12 is defined as the power of P with respect to S =0 (see Fig. 1.26(a), (b), (c)).

A YA
P
P
> X >
O O X
Fig. 1.26(a) Fig. 1.26(b)
YA
>X
O
Fig. 1.26(c)
1.2.8 Note

Apoint P(x,,y,) lies inthe interior of the circle, on the circle or in the exterior of the circle according

as the power of P with respect to the circle is negative, zero or positive respectively.

1.2.9 Theorem : The power of a point P(x,, y,) with respect to the circle S = 0is S .
Proof: Asperthenotation specifiedin 1.2.1, S = x>+)?+2gx+2fy+c=0.
The power of P(x,,y,)is CP2 - r? where C is the centre (—g, —f) and ris the radius of the circle. Then

CP2—p? = (x1+g)2+(yl+f)2—(x/g2+f2—c]z

= xlz-irylz-Fngl+2j“j/1 +c
=Sy
Hence the power of P(x,y,) withrespecttoS=01is S,.



Mathematics - IIB

1.2.10 Example

Let us find the power of (1,2) with respect to the circle x%+)?+6x+8y—96=0.
Here (x,,y,)=(1,2). By Theorem 1.2.9 the power of P(x, y,) withrespecttoS=01is S, ;.
.. Thepower of (1, 2) withrespect to given circle is

124+22+6(1)+8(2)— 96 = —69.

1.2.11 Theorem : Let S=0beacircleand P(x, y ) be any point in the plane. If aline through P meets
the circle at A and B then the power of P is equal to PA . PB.

Proof: Let

YA\

S= 2432 +2gx+ 2+ e =0 () pp

beacircle. There will be infinitely many lines through the point P
meeting the circle at two points (see Fig. 1.27). However the

product PA. PB is the same, though the points A and B are

B, -
different for different lines passing through P. 0 >X
Fig. 1.27
Any point (x,y) on astraight line passing through (x,, y,) must satisty the equations
x =x,trcosb
y =y trsinb .. (2)

where ris the distance from (x,,y,) to (x, ) and 0 is the angle made by the line with the positive X-axis.

To getthe common points of the circle (1) and the line (2), we have to solve the equations (1)

and (2). Therefore put x=x,+rcos6, y=y,+rsin6 in(1). Then
(x, +rcos 0)>+ (y, +rsin0)?+2g(x, +rcos 0) + 2y, +rsin0) +c=0.
Le.,  xZ+2x rcosO+r?cos?O+y2+2ry sin®+r2sin?0
+2gx, +2grcosO+2f, +2frsinb+c=0

iLe.,  r?(cos?0+sin?0)+2r[(x, +g)cosO+(y, +/)sinO] +x3+y2+2gx, +2fy, +c=0
1e., r2+2r[(x1+g)cos9+(y1 +/)sinB]+S,,=0 ..(3)

Let r,r,be roots of (3). Then r,.7,=S,

ie, PA.PB=S,,
Since the power of Pis S, |, wehave

PA .PB=Power of P.



1.2.12 Corollary
If S =0is acircleand P(x,y,) is an exterior point with respect to S = () then the length of the

tangent from P(x,y,)toS=0is \|Sy (seeFig. 1.28).

Proof: Letthe tangent drawn from Ptouch the circleat A 7
(Fig.1.28). By Theorem 1.2.11, we have P(x;, )
PA.PA=S,,
PA? =S,
PA= |/S;.
i.e., thelength of tangent from P(x,,y,) to 0

v
>

S=0is /S - Fig.1.28

1.2.13 Example
Letus find the length of tangent from (12, 17) to the circle x2 +)? — 6x — 8y —25=0.
By Corollary 1.2.12, the length of tangent from (12, 17) to the given circle is

VU122 +(17)% =6(12)-8(17)=25 = +/100 = 10.

1.2.14 Solved Problems

1. Problem : Locate the position of the point (2, 4) with respect to the circle
¥2+y?—4x—6y+11=0.
Solution: Here (x,y,)=(2,4)and S= x2+)?—dx—6y+11=0.
S, =P +@)*-4(2)-6(4)+11 = —1.
Since  S,,<0, by Theorem 1.2.3, the point(2,4) is inside the given circle.
2. Problem : Find the length of the tangent from (1, 3) to the circle x* +y° — 2x + 4y — 11 = 0.
Solution : Here (x|, y,)=(1,3)and S = x>+)? -2x+4y—11=0. By Corollary 1.2.12, the length of the

tangentis 4/S;; .

Hence the required length of the tangent
= JO2 +(3)2 -2(1) +4(3)-11.

=J9.
= 3.
3. Problem : Ifa point P is moving such that the length of tangents drawn from P to
X2 +)y2=2x+4y-20=0 (1)
and ¥ +y2-2x-8+1 =0 ..(2)

are in the ratio 2 : 1 then show that the equation of the locus of P is
X2 +y?=2x—12y+8=0.
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Solution : Let P(x,,y,) beany pointonthe locus and PT1, PT: bethe lengths oftangents from P to the circles
(1)and (2) respectively. Then we have

ﬁ1 B g

PT, 1
Le., \/x12+y12—2x1+4y1—20 = 2\/x12+y12—2x1—8y1+1
ie., 3(x% +y12) —6x, —36y, +24=0.

The equation of the locus of P is
x2+)?-2x—-12y+8=0.

Exercise 1(b)

I. 1. Locatetheposition of the point P with respect to the circle S=0when
(i) P(3,4) and S=x>+)>—4x—6y—12=0
i) P(1,5) and S=x*+)?-2x—-4y+3 =0
(i) P(4,2) and S =2x>+2)>-5x—4y-3=0
(iv) P2,-1)and S=x?>+)>?-2x—4y+3=0
2. Findthe power of the point P with respect to the circle S =0 when
(i) P=(5,-6) and S =x>+)?+8x+ 12y + 15.
(i) P=(-1,1) and S =x*+)?>—6x+4y—12.
(i) P=(2,3) and S =x>+)?—2x+8y—23
(ivy. P=(2,4) and S =x>+)*>—4x—6y—12
3. Findthelength oftangent from P to the circle S=0when
(i) P=(-2,5)and S =x*>+)*-25
(i) P=(0,0) and S =x?+)?— 14x+2y+25
(i) P=(2,5) and S=x>+)>—5x+4y-5
IL. 1. Ifthelengthofthe tangent from (5,4)to the circle x> +3? + 2ky=0is 1 then find k.
2. Ifthe length of the tangent from (2, 5) to the circle x2+12 — 5x+4y+k=0is /37 then find k.

III. 1. If a point P is moving such that the lengths of tangents drawn from P to the circles
x?+y?—4x—6y—12=0andx*+y?+6x+ 18y +26=0are in the ratio 2 : 3 then find the equation
ofthelocus of P.

2. If a point P is moving such that the lengths of tangents drawn from P to the circles
x?>+)?+8x +12y +15=0 and x*>+)? —4x—6y—12=0 are equal then find the equation of the
locus of P.



1.3 Position of a straight line in the plane of a circle
Condition for a line to be tangent

Inthe earlier section we learnt the position of a point with respect to a circle. Inthis section we shall learn
the position of a straight line in a plane with respect to a circle.

1.3.1 Different cases of position of a straight line with respect to a circle

Givenastraightline L=0 andacircle S=0wehave ¢ L
three possibilities, namely : it 2
(i) Theline meetsthe circle in two distinct points
(seeFig. 1.29).
oint 1
0 >X
Fig. 1.29
. . . . Y 4
(i) The line meets the circle in one and only one ' Only one point
point(i.e., touching the circle) (see Fig. 1.30).
L
5 > X
Fig. 1.30
(@ii1) The line L does not meet the circlei.e., L and the VA
circle have no common points (see Fig. 1.31).
Now we examine under what conditions the above
three situations arise.
L
0 >X
Fig. 1.31
1.3.2 Theorem : 4 straight line y =mx + ¢
2
(i) meets the circle x* + y* = ¥ in two distinct points if € <2
1+m
c 2 2
(i) touches the circle x’ +y° =1 if 5 =r

1+m



Mathematics - IIB

2
c
(i) has no points in common with the circle x° +y° =’ if 2 >,
+m
Proof: The equation ofthe given circleis
x2+y2=r2 .. (1)
and the equation ofthe given straight line is
y=mx+c (i.e,mx—y+c=0) ..(2)

Ifany point (x, y) is common to (1) and (2), the coordinates of the point satisfy both the
equations (1)and (2). Tosolve them we eliminatey from(1)and(2). Substituting(2)in (1) we get
X2+ (mx +c)?=r?
ie., x2 (1+m?)+2mex+ (2 —r¥)=0 ..(3)

Theroots of (3) are real, coincident or imaginary according as
Q2mc)? =41 +m?) (2 -1?) % 0
i.e., 4m2 02 - 4(02 + m202 — ],-2 _ r2m2)2 % 0

; 2 2\ <
e, A-rr1+m)30

C2

(1+m?)

C2

(1+m?)

(seeFig. 1.29)

2

i.e., é ro.

Case(i): If < r? thenthestrai ghtline given by (2) meets the circle in two distinct points

C2

(1+m?)

C2

Case (ii): If = 12, then the straight line given by (2) touches the circle (see Fig. 1.30)

Case (iii) : If > r? thenthe straight line given by (2) does not cut or touch the circle

(1+m?)

(see Fig. 1.31). Hence they do not have common points.

1.3.3 Corollary

The condition that the straight line y = mx + c (i) intersects a circle, (ii) touches the circle, (iii) does
not meet the circle is that the perpendicular distance from the centre of the circle to the line is less than or
is equals to or greater than its radius respectively.

Proof : By Theorem 1.3.2, the straight line y = mx + ¢ intersects or touches or does not meet the circle

x%+y?=r?according as



C2

(1+m?)

2

<
N

el <,
> >
1+m
The perpendicular distance from the centre (0, 0)to y=mx+cis

1e.,

:

<l

V1+m? ‘

From (1)and (2) the result follows.

1.3.4 Note

(1) Forallrealvalues of m the straight liney =mx +r«1+ m? s a tangent to the circle

(ii)
(iif)

x? +y? =1 and the slope of the tangent is m.
A straight line y = mx + c is a tangent to the circle x> +y° =1 if ¢ = irm.
The equation of tangent to the circle S= x° + y? + 2gx + 2fy + ¢ = 0 having the slope
mis(y+f)=m(x+g)+ rm where r is the radius of the circle. For,
the centre of the circle C=(—g,—f) and r= m . Shift the origin to (=g, —f)
without changing the direction of axes. Letthe new axesbe CX’, CY’.
If P isany point in the plane and (i) P=(x, y) withrespectto OX, OY
(i) P=(X, Y) withrespectto CX’, CY’ (see2.1.2 of Inter Mathematics - IB Text book) then
x=X-g
y=Y-f
The transformed equation of S=01is X2+ Y?=72. By Note 1.3.4(i) the equation of tangent

with slope mtothe circleis

YZmXJ_rr\/1+m2

Equation (3) withrespectto oldaxes OX, OY is

y+f=m(x+g) +ryl1+m>

(from(1)and(2))

Thus the equation of tangent to the circle x2+y?+2gx+2fy+c=0having slope m is given by

the equation (4).

(1)

)

(D)
- (2)

(3

(4
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1.3.5 Solved Problems

1. Problem: If S = x? +)? + 2gx + 2fy + ¢ = O represents a circle then show that the straight
linelx +my+n=20

B (gl+mf—n)2

(i) touches the circle S=0 if (g°+f? —c) 3
(I"+m")

N (gl +mf —n)?

(i) meets the circle S = 0 in two points if g%+ f? —c 7 3
(I +m~)

(gl +mf —n)*
< N
(I +m”)
Solution : Let C be the centre and » be the radius of the circle S =0. Then C=(—g, -f) and

r=Vg +f-c

(1)  Thegivenstraightlinetouchesthecircleif

L +mp)=n]

(i) will not meet the circle if g° +f? —c

(by Corollary 1.3.3)

\/12+m2
—(lg+ —
e, AJtefioc = llermion)]
\/12+m2
Squaring both sides, we get
2, 2 (Ig+mf —n)*
47— =
(1> +m?)

(i) Thegivenline /x+mx+n=0meets the circle S=0in two points if

S (gl+mf—n)2

(g2 +f*-0)
l2+m2

(by Corollary 1.3.3)

(i) The given line /x+my+n=0willnot meetthe circle S=0if

[+ mf —n)*
(82 +f2 —c) < % (by Corollary 1.3.3)
m

2. Problem: Find the length of the chord intercepted by the circlex? +)? +8x —4y —16 =0 onthe
line3x—y+4=0.

Solution: The centre ofthe given circle C=(—4,2)andradius r= /16 +4+16 = 6. Letthe perpendicular
distance from the centre to the line 3x —y+4=0bed. Then



S 13- +4]
VB + (1) AY
-0 V10 (see Fig. 1.32)
m P o

B

6

Length ofthe chord = 24/ P2 —d? c s

(-4,2)
-2i67 107’ y/

=24/26.
Fig. 1.32

3. Problem : Find the equation of tangents to x° + y° —4x + 6y — 12 = 0 which are parallel to
x+2y=8=0.

1
Solution: Here g=-2; /=3; r=+v4+9+12 =5 and the slope of the required tangent is 5 By Note

1.3.4 (eqn. 4) the equations of tangents are

1 [1
+3 =——(x=2) £ 5,1+~
y 2( ) 1

2y+3) = —x+2+545
ie., x+2y+(4+545)=0.
4. Problem : Show that the circle S = x° +1° + 2gx + 2fy + ¢ = 0 touches the
(1) X-axis if g“=c.
(i) Y-axis if f2=c.
Solution: Weknow thatby Theorem 1.1.8 the intercept madeby S=0 on X-axis is 2 g2 —c. Ifthecircle

touches the X-axisthen 2 g2 -c=0 = g2 = ¢. Similarly (i1) can be proved.

1.3.6 Chord joining two points on a circle.

Inthe next section we derive the equation of the chord joining two points on a circle.
1.3.7 Theorem : If P(x,, y,) and Q(x,, y,) are two points on the circle S = 0 the equation of the secant
PQisS, +8,=8S,,
Proof: Observe that the two points on the secant are known. Its equation can be found using two-point form of
astraight line. This procedure can be adopted for analytical problems. The intention of this theorem s to find the

equation of the chord involving g, 7, ¢, x|, x,,y, and y, which will be used in finding the equation of tangent.
The proofofthe theorem runs as follows,
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Since P(x,,y,)and Q(x,, y,) are distinct , we may suppose thatx, # x,. Thenthe equation of ﬁ is

y=n = 222 (x-x) (D)
X2 =X
Since P(x,y,) and Q(x,,y,) are lying on the circle S=0 we have

x12+y12+2gx1 +2fy,+¢c=0 and x§+y§+2gx2+2fj/2+c=O.
Subtracting and simplifying, we get
V=n _ —(a+x+2¢)

Hox Oy ty,+2f) - (2)
Substituting (2)in (1), we obtain
—(x;+x,+2
P G R A (3

i+ y2+2f)
(r=x) O+, +28) + (v =y) (v, + 1, T2/)=0
XX, Ty txx, Ty, +2gx 21y = xx, tyy, t+ x12 +y12 +2gx, + 2/,
By adding g(x, +x,) + Ay, +»,) + 2c on both sides to the above equation we obtain
S1+8,=S,+ Sy,
$1+8,=S, (++81,=0)
The equation of secant % isS, +S,=S,.
1.3.8 Equation of tangent at a point on the circle
Inthe next section we derive the equation of tangent at a point on the circle
1.3.9 Theorem : The equation of the tangent at the point P(x, y,) to the circle
SEx2+y2+2gx+2]fj/+c=0iSS]=0.
Proof: Let Q(x,,y,) beaneighbouring pointof Pand lying onthe circle. By Theorem 1.3.7 the equation of
PQis S,+S,=S,
1e.,
xxy tyy et x) Hf(yHy) Fetxx, tyy, t el tx) (v ty,) e
=x Xty T8t x) Hf(yty)te
AsQ — P(i.e.,x, = x,,y, —,) thisequation becomes
xx;+yyyFgxtx) Hf+y ) Fetxx, fyy gl tx) HfFy)te

= x12 +y12+2gx1+2fj/1+c



Le, S, +5,=S,

ie, 2S,=S,,

But S,,=0, asP(x,,y,) lyingonS=0. Hence S, =0
Le., xx; +yy, tglx+x)+ f(y+y,)+c=0.

1.3.10 Note
The equation of the tangent at the point (x, y,) to the circle x2+y2=rlisxx LT - r=0.

1.3.11 Point of Contact

Ifastraightline /x + my+n=0 touches the circle S = x?+)%+2gx+2f+c=0 atP. (x;, y,) then
this line is the tangent to the circle S = 0 at P(x,, y;) and hence by Theorem 1.3.9 its equation is
(x; Tgx+ (v, +f)y+(gx, +fy, +¢)=0 and therefore (x, +g), (v, + /), gx, +/y, + ¢ are proportional to
I,m,nrespectively. Using these three proportions it is possible to find the point of contact of the given tangent to
the circle S=0.

1.3.12 Solved Problems

1. Problem: Find the equation of the tangent to x* + y° — 6x + 4y— 12 =0at (-1, 1).
Solution : Here (x;,y,)=(~1, 1)and S = x> +)? - 6x+4y—12=0.
The equation of the tangent isx(—1) +y(1)=3(x—1)+2(y+1)—12=0(by Theorem 1.3.9)
e, 4x-3y+7=0.
2. Problem: Find the equation of the tangent to x°> +y° —2x + 4y =0 at (3, —1). Also find the equation
of tangent parallel to it.
Solution: Here (x;, y,)=(3,-1) and

S=x*+)y?-2x+4y=0 (1)
.. The equation oftangentat (3,—1)is x(3) +y(-1)—(x+3)+2(y—1)=0
ie., 3x—y-x-3+2y—-2=0
ie., 2x+y—=5=0 ..(2)

Slope of the tangent is m=-2. Forthecircle(1), g=-1; f=2;
radius r=~1+4-0=+/5. By Note 1.3.4, the equations of tangents to (1) are

y2 = 22— 1)+ 544
(y+2)=-=2(x-1)=%5
2x+y+5 =0.
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One of these equations namely 2x +y—5=0is the tangent at (3,—1).
.. Thetangent parallel to2x+y—-5=0 is 2x+y+5=0.
3. Problem: If 4x—3y+ 7 =0 is a tangent to the circle represented by x’ +y?—6x+4y—12=10
then find its point of contact.
Solution: Let(x;,y,) bethe pointofcontact. Thenby 1.3.11, we have

x—=3 _ yt2 =3x,+2y, —12
1 3 = ( - J .. (1)
From firstand second equalities of (1), we get
3x, +4y, =1 -.(2)

Now by taking first and third equalities of (1), we get
19x, = 8y, =27 ..(3)
Solving (2) and (3) we obtain
x, == y,=1
Hence the point of contactis (-1, 1).
4. Problem: Find the equations of circles which touch 2x— 3y +1 = 0 at (1, 1) and having radius 13 .

Solution: The centres of the required circles lie on a line (see Fig. 1.33) which is perpendicular to
2x—3y+1=0and passing through (1, 1)
ie., on3x+2y—-5=0. YA
.. The centres are situated on 3x +2y—5=0at a distance
«/E from (1, ). Thusthe centres are given by =3y +1=0

_2 3 EN
1+\/E — |, 1+«/§-— and
1 21

-2 3
I

(See Intermediate Mathematics - IB Text book)
ie., (=1,4)and (3,-2) (see Fig. 1.33) Fig.1.33

The required circles are
(x+1)2+(y—-4)*=13and
(x=3)2+(y+2)*=13

Le., x*+)?+2x—8y+4=0 and x*+y*—6x+4y=0.



5. Problem: Show that the line 5x + 12y — 4 = 0 touches the circle x* + y?> — 6x + 4y + 12 = 0.
Solution: Here g=-3; f=2; c=12andradius=~/9+4-12 = | .. (1)
The given straight line touches the circle if the perpendicular distance from the centrei.e., (3,-2)to

the given straight line equals to the radius of the given circle.
Let d be the perpendicular distance from the centre to the given straight line. Then
|5(3)+12(-2)—-4|
J57 +a27
=1 .. (2)

Fromthe facts (1) and (2) we can conclude that the given straight line touches the given circle
(by Corollary 1.3.3).

d =

1.3.13 Theorem: If 0, [ie., (=g +rcos 0,, f+rsin 0,) where ris the radius of the circle]
and 0, [ie., (—g +rcos 0, —f+rsin0,)] are two points on

S=x’+y°+2gx+2fp+c=0 ()

then the equation of the chord joining these points is

(x+ g)cos(el;z%) + (y+f)sin(¥] = rcos(Lzezj .. (2)

Proof: Let A and B be the points on the circle (1) corresponding to 6, and 6, (these are parametric values
of 0). Then

A = (-gtrcos, —-f+rsinb,))
B = (-g+rcosB,, -f+rsinb,)
.. Theequation ofthe chord AB is

r(Sin 92 — sin 91)

(y+f-rsin0) = (x+g—rcos0;)

r(cos0, — cos0;)

Simplifying the above equation, we get
(x+g) cos( O -12-62 ) + v+ f) sin(@] = rcos[%j.

1.3.14 Note
(i) The equation of the tangent at 0 of the circle S = x*> + y°* + 2gx + 2fy + ¢ = 0 is given by
(x +g) cosO+ (v +f) sin O =rwhereris the radius of the circle S = 0.
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(i) Forthecirclex? +y? =2, the equation of the chordjoining the points 0 , and 6, (Particular values
0,+0 0,+6 0,-6
of the parameter 0) is xcoslT2 + ysin% = rcos[%),

(i) For the circle x* +y° =r?, the equation of the tangent at 0 is given by x cos 0+ ysin@=r.

1.3.15 Solved Problems

1. Problem : I[fthe parametric values of two points Aand B lying on the circle x’+y°—6x+4y—12=10
are 30° and 60° respectively then find the equation of the chord joining A and B.

Solution: Here g=-3; f=-2; r=+v9+4+12 =5.
.. The equation of the chord joining the points 6, =30°, 6, =60° is (by Theorem 1.3.13)

0 0 0 0 0 200
(X—3) Cosw + (y+2) sm[%] = Scos[WJ

ie., (x—3)cos 459+ (y+2)sin459=5cos 159
(=3 +(+2) _ o (3+1)

V2 242
e, 2x+2y—(7+5~3)=0.
2. Problem: Find the equation of the tangent at the point 30° (parametric value of 0) of the circle
2 +y? +4x+6y—39=0.
Solution : Here g=2; f=3; ¢c=-39; r=v4+9+39 = V52 =213 By Note 1.3.14(i) the required

equation is

(x+2) cos 300+ (y +3)sin30°=2/13

ie., (x+2)§ + (y+3)(%) =213

ie., VBx+y+3+2(:/3-2/13) = 0.
3. Problem: Find the area of the triangle formed by the tangent at P(x, y ) to the circle
X +y)? =a? AY (1)
with the coordinate axes where x,;y,; # 0. B

Solution : Theequation ofthe tangentat P(x,y, ) to the circle (1)
(seeFig. 1.34)1s

xx1+yy1—a2=0 .. (2) 0 Ao
Letthistangent cut the X-axisatAand Y-axisatB. We

haveto find the area of the triangle OAB.

(xl,)/l)
P

Fig. 1.34



. 2 2 .
The x, y intercepts of (2) are ?C—l and aTI respectively.
.. Required area of the triangle

= AAOB area

2 2

a- a

XN
4

a v
2|x1)’1|.

1

2

Normal at P

1.3.16 Normal

The normal at any point P of the circle is the
tangent at P
line which passes through P and is perpendicular to

the tangentat P (see Fig. 1.35)

) >X
Fig.1.35
1.3.17 Equation of Normal
We find the equation of normal ata point lying on the circle.
1.3.18 Theorem : The equation of the normal at P(x,, y,) of the circle
S=x2+y?2ex+2f+c=0 .. (1)

Is (x_x]) (J’]+f)_()’_J’1)(x]+g):0-
Proof: Let Cbethecentre ofthe circle given by (1). Then C =(—g,—f). We know that normal at any point
passes through the centre of the circle (see Fig. 1.35).

@z}ﬁ"'f
X tg

The slope of

Hence the equation of thenormal at P(x,,y, ) is

_ it

S g T

=y

Le., (x—xl)(yl +f)_(y_y1) (x1+g)=0

1.3.19 Note

The equation of the normal to the circle x* +y° = ¥* at P(x pyy) is xy;—yx; =0.
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1.3.20 Solved Problems
1. Problem : Find the equation of the normal to the circle x* +y° —4x— 6y + 11 =0 at (3, 2). Also find
the other point where the normal meets the circle.

Solution: LetA(3,2), Cbethe centre of given circle and the normal at A meet the circle at B(a, b). From the
hypothesis, we have

2g = —4 ie, g=-2
2f = -6 e, f=-3;
x, = 3 and v = 2.

By Theorem 1.3.18, the equation of normal at A(3,2) s
(x=3)2-3)-(»r-2)3-2)=0
e, x+ty-5=0.
The centre of the circle is the mid point of A and B (points of intersection of normal and circle)

a+3

=2 =a=1
2
and b2i=3:>b=4,

Hence the normal at (3, 2) meets the circleat (1,4).

2. Problem: Find the area of the triangle formed by the normal at (3, —4) to the circle

x2 432 = 22x — 4y + 25 = 0 with the coordinate axes.
Solution: Here 2g=-22; 2f=-4 and x;,=3 and y,=—4.
By Theorem 1.3.18, the equation of normal is
x=-3)(-4-2)-(+t4HB-11)=0
ie., 3x—-4y-25=0 . (1)

The straight line (1) cuts the x-axis at (?, 0) and y-axis (0, - 2?5) .

Hence therequired areais

s 25
2| 3 4
625

24



3. Problem: Show that the line Ix + my + n =0 is a normal to the circle S =0 if and only if
gl+mf =n.

Solution: The straightline /x+my+n=0isnormal to the circle

II.

g 0

0

AN O

S=x2+)*+2gx+2fp+c=0

ifthe centre (—g, —f) of the circle lies on Ix + my+n=0
(=) +m(=)+n=0

lg+mf=n.

Exercise 1(c)
Find the equation of the tangent at P of the circle S =0 where P and S are given by
1 P=(7,-5), S=x*+)?—6x+4y-12
i P=(-1,1), S =x?+y?—6x+4y—12
(i) P=(-6,-9), S=x>+)>+4x+6y—39

(iv) P=(3,4), S=x2+y*—4x—6y+11.
Find the equation of the normal at P of the circle S=0 where P and S are given by
i) P=(3,-4), S=x2+)y’+x+y-24
@@ P=(3,5), S=x*+)?—10x-2y+6
@) P=(1,3), S =3(x*+)?) - 19x—29y + 76
@) P=(1,2), S =x%+)? - 22x -4y +25.
Find the length of the chord intercepted by the circle xZ+ y? —x + 3y — 22 = 0 on the
line y=x-3.
Find the length of the chord intercepted by the circle x? + y> — 8x — 2y — 8 = 0 on the
linex+y+1=0.
Find the length of the chord formed by x% + y> = a2 on the line x coso.+y sin ot =p.
Find the equation of'the circle with centre (2, 3) and touching the line 3x—4y+1=0
Find the equation of'the circle with centre (-3, 4) and touching y-axis.
Find the equation of tangents of the circle x2 + )2 — 8x — 2y + 12 =0 at the points whose ordinates
are 1.
Find the equation of tangents of the circle x> + y* — 10 = 0 at the points whose abscissae are 1.



L. 1.

10.

11.
12.

13.
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If 2 +3y2=c?and = + % =1 intersect at A and B then find AB. Hence deduce the

a
condition that the line touches the circle.

The line y = mx + ¢ and the circle x> +)? = a” intersect at A and B.
If AB =2\ then show that c?= (1 +m?) (a®> — \?).

. Find the equation of the circle with centre (-2, 3) cutting a chord length 2 units on

3x +4y+4=0.

Find the equation of tangent and normal at (3, 2) of the circle x* +)?—x—3y—4=0.
Find the equation of tangent and normal at (1, 1) to the circle 2x*+2y?—2x—5y+3=0.
Prove that the tangent at (3,—2) of the circle x*>+3?= 13 touches the circle
x?+y?+2x—10y—26=0and find its point of contact.

Show that the tangent at (=1, 2) of the circle x> + ? — 4x — 8y + 7 = 0 touches the circle
x?+)?+4x+6y=0and also find its point of contact.

Find the equations of the tangents to the circle x> +y? — 4x + 6y — 12 = 0 which are parallel to
x+y—-8=0.

Find the equations of the tangents to the circle x> +y? + 2x — 2y — 3 =0 which are perpendicular to
3x—y+4=0.

Find the equation of the tangents to the circle x* +)? — 4x — 6y + 3 =0 which makes an angle 45° with
X-axis.

Find the equation of the circle passing through (-1, 0) and touching x+y—7=0at(3,4).

Find the equations of circles passing through (1,-1), touching the lines 4x+3y+5=0and
3x-4y-10=0.

Show that x+y+1=0 touches the circle x>+)?—3x+7y+14=0 and find its point of contact.

1.4 Chord of contact and polar

1.4.1 Theorem : If P(x,, y,) is an exterior point of the circle.

S=

X2 +y2+2gx + 2 +c=0 (1)

then there exist two tangents from P to the circle S=0 (see Fig. 1.36).

Proof: Let Cbethe centre and rbe the radius of the circle (1). ThenC=(—g,—f)and r=+/g>+ f*—c. Let

mbethe slope of a tangent passing through (x,y,). By Note 1.3.4 (iii) the equation of the tangent with slope

mis



If it passes through (x,,y,), we have

or

or

or

or

y+f)=mx+g)xt r N1+ m?

n+f=m(x+g)tr N1+m?
[0, +/) —m(x, + ) = (1 +m?)
m*[(x,+g)*=r’]=2m (x,+g) v, +/)+, +/)-r=0 ..(2)

Thediscriminantof (2)is © Fig. 136 g
A, + g 0, T/ Y =4l 8P =] [, +/) =]
4r? [x12+y12+2gx1+2fy1+c] Cori=g?+f*=0)
47 S|

Since P(x,y,) is an exterior point to the circle S=0, wehave S, >0.

- The discriminant of (2) is positive and hence we have two real and distinct values of m say m, and m,,.

Forthese two values we have two tangents from P(x,,y,) to the circle (1).

1.4.2 Note

(1) If the discriminant of (2) is zero then the roots of equation (2) coincide and hence the tangents

described above coincide. This situation arises when the point is on the circle.

(i) WhenP(x,,y,)is apoint in the interior of the circle S=0then S, <0 and hence the discriminant of

(2) is negative so that equation (2) has no real roots and hence there are no tangents passing
through P to the circle.

(i) If © is the angle between the tangents through a point P(x,, y,) to the circle S = 0 then

0 r
tan(z) = K where r is the radius of the circle.

For if PT and PT’ aretwo tangents to the circle
S=0through P (whichisan exterior point with respect
to the circle S =0) then the triangles APTC,
APT’ Careidentical (see Fig. 1.37)

.. TPC = T"PC = 012
0 r

o tan | — —E—
N 2) PT /S,

, : , : 1
(iv) Theareaofthetriangle APTC asshown intheFig. 1.37 is 5 r Sy .
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1.4.3 Solved Problems

1. Problem : Find the condition that the tangents drawn from the exterior point (g,f) to
S= x2+y?+2gx+2fy+c=0are perpendicular to each other.
Solution : Ifthe angle between the tangents drawn from P(x,, y,) to S=01is O then

0 r
tan| — |= —
( 2} /Sn (by Note 1.4.2 (iii))

where r is the radius of the circle S =0.
Here  (x,,y,) = (g./)

S, =@+ 282 e
i, S, =38+3f +c

0=90" o tan(%jz g +]
) B
& 3g+3f Tte=g+f ¢
o 287 +2f24+2¢=0
o g+ f2+c=0.

Thus the tangents drawn from (g, /) to the circle S = 0 are perpendicular ifand only if g2+ 7 2+c¢=0.
In this case note that ¢ <0.

2. Problem : I 0, 0, are the angles of inclination of tangents through a point P to the circle x* + y* = &’
then find the locus of P when cot 6, + cot 0, = k.

Solution: The equation of the tangent to x> +)? = a* having the slope m is

y =mx £ ayl+m® - (1)

LetP(x,,y,) beapointonthe locus. Ifthe tangents (1) passes through P then

v, =mx * am
or v, — mx = iam
or (v — mxl)2 = a*(1+m?)
or m* (x{ —a®)—2mx,y, + y} —a’ =0.

If m,, m, are theroots of the above equation then

2xy
m, +m, = tan91+tan92=x12x_1;2 ()
2 2
y, —a
and m; m, = tan6,. tanO, = x} — ..(3)



Giventhat cot0, + cot0, =k
tan6, + tan0,

tanO, tanO,

2x,y
=k (from (2) and (3))
Yy —a
or k(i —a’) = 2x,

(4

Also, conversely if P(x,,y, ) satisfies the equation (4) then it can be shown that cot 6, +cot 0, =k,

thus the locus of Pis k()? —a?) =2xy. A

>X

A
1.4.4 Chord of Contact

If the tangents drawn through P(x,,y,)toa
circle S=0touchthe circle at points Aand B then the
secant AB is called the chord of contact of P with B

Chord of contact of P
respectto S=0 (see Fig. 1.38). 5
Fig. 1.38

1.4.5 Theorem : If P(x,y,) is an exterior point to the circle
S=x?+y?+2gx+2fy+c=0 then the equation of the chord of contact of P with respect to
S=0isS,=0.
Proof: Letthetangents drawn from P(x,, y,) tothe circle S=0touchatA(x,,y,) and B(x,,y;).
The equation of tangent at A(x,, y,) is xx, +yy, + g(x+x,) + iy +y,) +c=0.
Similarly the equation of tangent at B(x;, y,) is xx; +yy; +g(x +x;) +Ay +y,) +c=0.
These two tangents are passing through P(x,, y,)
XX,y + 80 Fx) Ay +y,) e =0
and Xyt s el F) F Ay Ty +e=0
Thus the two points A(x,,y,) and B(x;, y,) satisfy the following linear equationinxandy
xx, Hyy, tglx+x)+fy+y)+e=0.
Note that equation (3) can be written as
x(x, +g) ¥y, +f) +(gx, + /v, +¢)=0.
Clearly equation (4) represents a straight line. Equations (2) and (3) show that the points
A(x,,y,)and B(x,,y,) are satisfying equation (4) (hence equation (3)).

.. The equation of the chord of contact AB is givenby (3)i.e., S,=0.

1.4.6 Note

(i) IfthepointP(x,,y,) is onthe circle S =0 then the tangent itself can be defined as the
chord of contact.

(D
)

3

. (d)
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(i) IfthepointP(x,,y,)is an interior point of the circle S= 0 then the chord of contact does
not exist.

1.4.7 Solved Problems

1. Problem : Find the chord of contact of (2, 5) with respect to the circle
x2+y?— 5x+4y-2=0.
Solution : Here (x,,,)=(2,5). By Theorem 1.4.5 the required chord of contact is

5
xx, +yy, - §(x+x1)+2(y+yl)—2=0.

Substituting x, and y, values, we get

x(2) +y(5) = % (x+2)+2(y+5)-2=0

1e., x— 14y-6=0.
2. Problem : Ifthe chord of contact of a point P with respect to the circle
x*+y?=a? ..(1)
cutthecircleat A and B suchthat AOB = 90° then show that Plies on the circle
X2+ )2 =2d%
Solution : Let P(x|,y,) beapointand letthe chord of contact of it cut the circlein Aand B such that
AOB = 90°. The equation ofthe chord of contact of P(x,,y,) withrespectto (1)is
xx, +yy,—a*=0 ..(2)
The equation to the pair of lines QA and OB is given by

2
+
x2+y2—a2(xx1 2)’)’1] -0

a
or a*(x* + %) = (xx,; +yy,)*=0
or x*(a® = x0)—=2x,y,xy + y*(a® = y1)=0 ..(3)

Since AOB = 90°, we have the coefficient of x?in (3) + coefficient of 1 in (3) =0

2_ 2, 2 2
wa —xita -y, =0

Le., xl2 + )’12 =24’

Hence the point P(x,,y,) lies onthe circle x*+)? =24



1.4.8 Pole and polar A

Let S=0 be a circle and P be any point in
the plane other than the centre of S = 0. If any YA
line drawn through the point P meets the circle in Q : R
two points Q and R, then the locus of the points of
intersection of tangents drawn at Q and Ris a
line, called polar of P and P is called pole of the
polar (see Fig. 1.39). : oot of P

>X

0 Fig. 1.39
1.4.9 Theorem : The equation of the polar of P(x,, y,) withrespectto S=01is S = 0.
Proof: Let QR be any chord drawn through P(x,, y,) and let the tangents at Q and R meet at the point A(c, 3).
Then QR isachord of contact of A(a, B).
The equation of @ is
xoutyptgle+ o) +Ay+pB)+c=0.
Itis passes through P(x,, y,), therefore
X0y B+ gl + o)Ay, + B +e=0
A(a, B) satisfies S, =0.
.. The equation of polar of P(x,y,)is S,=0.
1.4.10 Note

() Suppose a point Ao, B) which lies outside or on the circle satisfies the equation

S, = xx, +yy, +glx+x)+Ay+y)+c=0.

Then x,o.+y B+ g(x, + o) + Ay, + B) +c=0 so that the point P(x,, y,) lies on the straight line
ox + By + g(a+x) + AP +y) + ¢ =0 which is the chord of contact of A(a, B) of the circle S = 0. i.e.,
A(o, B) is a point on the polar of the point P(x,, y,).

Thus every point A(Q, B) on the line S, =0 which is outside or on the circle is the intersection of the
tangents at the points of intersection of a line viz.

ox +Py+gxta)+AB+y)+c=0
throughP(x,, y,) and the circle. P

YN

(i) If P(x,,y,) is an exterior point of
the circle then the chord of contact
of P will be the polar of P (see

Fig. 1.40). 0 " Polar of P
Fig. 1.40

>X
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(i) IfP(x,,y,) lies on the circle then the v
polar of P coincides with the tangent
at P(x,,y,) (seeFig.1.41).

, Polar of P
P

Fig. 1.41

>X

(v) If P(x,,y,) is inside the circle then

the polar of P does not intersect the v

S—/
circle. (see Fig. 1.42). V\y A
Polar of P

(0]

Fig. 1.42

(v) If C isthe centre ofthe circle then the polar of P has slope — (1 +8) andhenceitis perpendicular to
n+f)

CP (whoseslope is O+ f) ).
(x +8)

(vi) If P is the centre of a circle S=0 then the polar of P does not exist i.e., the polar of P(-g,—f") of
the circle S =x>+y?+2gx +2fy + ¢ =0 does not exist.

(vii)
P(x,;,y) Tangent Chord of Polar of P
atP contactatP

Interior of Doesnot Doesnot S,=0
thecircle exist exist Pisdifferent
from centre

onthecircle S1 =0 S1 =0 8120

Exterior Doesnot
ofthecircle exist S,=0 S, =0

1.4.11 Theorem : The pole of Ix + my +n=0 (n# 0) with respect to the circle x> +y*>=a? is

Proof: LetP(x,,y,) be the pole of

Ix+my+n=0



5]

withrespecttothe circle

x*+y?=a? (2
By Theorem 1.4.9, the polar of P with respect to the circle (2) is
xx, +yy,—a*=0 .. (3)
The equations (1) and (3) represent the same straight line
Aon_ 4
I m n
2 2
— l —
Hence X = a,ylz am
n

Therefore the pole of /x+my+n=0withrespectto the circle (2) is (
n n

—a’l —azmj
, .

1.4.12 Note
The pole of Ix+my+n=0 withrespecttoS= x> +)?+2gx+2fy+c=0is

Ir’ mr’
gt~ f
lg+mf—n lg+mf —n
where 7 is the radius of the circle if Ig+mf—n # 0.

1.4.13 Solved Problems

1. Problem : Find the equation of the polar of (2, 3) with respect to the circle

x2+ )2+ 6x+8y—96=0.

Solution : Here (x,,y,)=(2,3)and S = x?+)?+ 6x+ 8y~ 96 =0. Hence by Theorem 1.4.9, the equation of
polaris x(2)+y(3)+3(x+2)+4(y+3)—96=0 i.e.,5x+Ty—78=0.

2. Problem : Find the pole of x+y+2=0withrespect to the circle

x2+y?—4dx+6y—12=0.

Solution: Here lx+my+n=0isx+y+2=0 andS=0is S=x*+ y?—4x+6y —12= 0. Therefore,
[=1; m=1; n=2;g=-2;f=3;and radius of the circle r = m = 5. ByNote 1.4.12, the pole of
Ix+my+n=0 withrespecttoS=01s

Ir’ mr’
gt [t/
lg+mf—n lg+mf—-n)’
. Thepole of x+y+2=0 withrespectto the circle x*>+)?—4x+6y—12=0is

2 2
R O1C) S ( 1&)
D EE2)+MHB)-2 D 2)+1 B)-2
ie., (2-25, =3-25)
ie., (=23, —28)

.. The pole of x+y+2=0 withrespectto the given circle is (—23, -28).
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3. Problem : Show that the poles of the tangents to the circle

x*+y?=a? (1)
with respect to the circle

(x+a)*+y*=2d* ..(2)
lieon y*+4dax =0.

Solution : LetP(x,,y,) be the pole of the tangent to the circle (1) with respect to the circle (2). Then the polar
of Pwith respectto the circle given by (2) is atangent to the circle given by (1). Now, the polar of Pwith respect
to(2)is
xx, tyy, ta(x+x)-a*=0
ie., x(x, +a) +yy, + (ax,—a*)=0. ..(3)
Thislineisatangentto circle(1)

‘O+O+ax1—a2‘

a =
V(x + a)’ + )’12
Le., yl2 +4ax, =0.

.. The poles ofthe tangents to circle (1) with respectto (2) lie on the curve
V> +4ax=0.
1.4.14 Theorem : Thepolar of P(x,, y ) withrespect to the circle S = 0 passes through Q(x,, y,) < the
polar of Q passes through P.
Proof: Suppose that the polar of P(x,,y,) withrespect to the circle
S=x?+)?+2gx +2f+c=0 .. (1)
passes through Q(x,, ).
We shall prove that the polar of Q(x,, y,) passes through P.
The polar of P withrespectto (1)is S, =0. Ifit passes through Q(x,,y,) then

S,=0 ..(2)
Now the polar of Q(x,, y,) withrespect to the circle (1) is
S,=0. ..(3)

It passes through Pif S, =0. Inview of (2) the condition S, =0 is satisfied. Hence the polar of P passes
through Q. Then the polar of Q withrespectto the circle S=0passes through P. Similarly the converse part can
be proved.

1.4.15 Conjugate points

Two points P and Q are said to be conjugate points with respect to the circle S = 0 if Q lies on the
polar of P (observe that if Q lies on the polar of P then P lies on the polar of Q).



1.4.16 Note

The condition that the two points P(x,, y,) and Q(x,, y,) are conjugate points with respect to the circle
S=0isS,,=0.
1.4.17 Conjugate lines

If Pand Q are conjugate points with respect to the circle S =0 then the polars of P and Q are called
conjugate lines with respect to the circle S=0.

1.4.18 Theorem: Let S=x2+y?+2gx+2f+c=0 .. (1)
beacirclewithradiusrand [x+my+n =0, ..(2)
Lx+my+n,=0 ..(3)

be two straight lines. Then the following statements are equivalent.
@O lx+tmy+n =0, Lx+my+n,=0areconjugate lines with respect to the circle (1)
() ~(L,+mm)= g+mf-n)(g+m,f-n,)

Proof: (i) = (ii)

Suppose that the lines given by (2) and (3) are conjugate. Thenthe pole of (2) i.e.,

2 2
O | —
Lg+mf—-n Lg+mf—-n
lieson (3). Hereristheradius ofthe circle (1). Since (2) and (3) are conjugate, this point lies on (3).

l 2 2
'.lz{—g+ " }+m2 -f+ mr +n,=0
(hg+mf—n) (Lg+mf—ny)

2
e, (cbg-mf+ ny)+ Lbtmm) I _,
(g +mf—n)
e, (I,L,+m m)=(,g+mf-n)(l,g+myf—n,).
Thus (i) = (ii) isproved. Now we prove (ii) = (i)

Suppose (1,1, +mm,) = (l,g+mf—n)(,g+m[f-n,)

r? (L, + mm,)
Lg+mf—n

2 2
= L i-g+ hr + m, \—f+ T +n, =0
(Lg+mf—n) (Lg+mf—n)

= Thepoleof(2)lieson(3)

=Lg+m,f—n,

= Thelines given by (2) and (3) are conjugate.
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1.4.19 Note

Twolines / x+m y+n,=0 and Lx+m,y+n,=0 are conjugate withrespect to the circlex*+)?=a?
ifand onlyifa*(/, I, +mm,)=nn,.
1.4.20 Solved Problems

1. Problem : Show that (4,-2) and (3, —6) are conjugate with respect to the circle x*+y?—24=0.
Solution : Here (x,y,)= (4,-2)and (x,,»,)=(3,—6) and S = x*+)?>—24=0. Two points (x,,y,) and
(x,,y,) are conjugate with respectto the circle S=01f S, =0. Inthis case
x.x, tyy,—24=0.
Forthegivenpoints ~ S,,=(4)(3)+(-2) (—6)—24=0.
.. The given points are conjugate with respect to the given circle.

2. Problem : If (4, k) and (2, 3) are conjugate points with respect to the circle x*+y* =17 then find k.
Solution : Here (x,,y,)=(4,k),(x,,,)=(2,3) and S = x>+)?—17=0. Since the given points are conjugate,
wehaveS  =0.

Le., xx,+tyy,—17=0

ie, @QR)+k)(B)-17=0

= k=3.
3. Problem : Show that the lines 2x + 3y + 11 = 0 and 2x — 2y — I = 0 are conjugate with respect to the
circlex’ +y’ +4x + 6y —12 = 0.
Solution: Here/,=2,m =3,n,=11;1,=2,m,=-2,n,=—1andg=2,/=3,c=12. Further the radius of the
circle y = /4+9-12 =1. By Theorem 1.4.18, wehave / x+my+n, =0,
l

x+myy+n,=0areconjugate withrespectto S=01if

(1 L+ mmy)=(l.g+mf—n)(l,g+myf—n,) .. (1)
LHS. of (D=(1)7 [2)2)+(3)(-2)=-2
RH.S. of (I)=4+9-11) (4-6+1)==2
.. Condition (1) is satisfied by the given lines with respect to the given circle. Hence they are conjugate
lines.
4. Problem : Show that the area of the triangle formed by the two tangents through P(x , y ) to the circle.

r(sll)3/2
S+ r?

S=x?+y?+2gx +2fy+c=0 and the chord of contact of P withrespectto S =0 is where r

is the radius of the circle.



Solution : Let PA and PB be two tangents through P
tothe circle S=0and 6 be the angle between these
two tangents. We know that

0 r
tan (gj = B (ByNote 1.4.2(iii))

Required area (see Fig. 1.43)
= AAPB area

1
5 PA.PB. sin©

1 2tan(g)
= — S \/Sn .

2 2
1+ tan“(—
(2)

1.4.21 Definition

(P

Fig. 1.

43

side of C and CP.CQ = 2.

Let C be the centre and r be the radius of the circle S = 0. Two points P and Q are said to be
inverse points withrespect to the circle S=0 if C, P, Q are collinear such that P, Q are on the same

1.4.22 Theorem : Let C be the centre and r be the radius of the circle S= x* +y* — > = 0. Two points
P and Q are inverse points if and only if Q is the point of intersection of the polar of P with respect to

S'=0and the line joining P and C.

Proof: Suppose that P(x,y,)and Q(x,, y,) are the inverse
points. Then

(i) CP.CQ=r?
(i1) C,P,Qare collinear
From (i), we get
Gf+yD) gty =rt (D)
From (ii), we get ACPQ area=0
Le, xy,—xy,=0 ..(2)

YA

.

P
Q
C > X
Polar of P
Fig.1.44
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Equation(1)isequivalentto
XX+ WYy vy =1t
XX+ YEys 00y —%y)" + 2000y, = 1
(5 x, +y2)* +0 = r* (by (2))
XX, +yy,=%r
Since P, Q lie on the same side of C, we getx, x,>0,y, y,>0.
XX, +yy,= 1
Thus P, Q are conjugate points.
Q lies onthe polar of P.
Thus Q is the intersection of CP and the polar of P.
Conversely suppose Q is the intersection of the polar of Pand CP. We shall prove that CP.CQ =72
Equation of polar of P is xx, +yy, — r*=0
[0+0-r2| 2

> 2 2 .
\/xl +n \/x1 +)

2
Thus CP.CQ=yx; +¥] . ——— =17
VX T

Hence P and Q are inverse points.

cQ=

1.4.23 Note

The inverse of the point P with respect to the circle S =0 is the foot of the perpendicular from the centre of
the circle S=0to the polar of P.
1.4.24 Example

Let us find the inverse point of (-2, 3) with respect to the circle x*>+3)? —4x—6y+9=0.
LetP=(-2,3)and C be the centre of the circle. Then C=(2, 3). The polar of P is
x(-2)+y(3)-2(x-2)-3(y+3)+9=0

e, x=1.

The equation ofthe line CPis

_3-3
2+1

ie., y = 3.

y -3 (x+2)

From (1) and (2), we get the common pointof x=1and y=3as (1, 3).
. The inverse point of (-2, 3) is (1, 3).



1.4.25 Equation of chord with given middle point
Now, we derive the equation of chord when the middle point ofit is known.
1.4.26 Theorem : If P(x,,y,) is the mid - point of a chord AB (other than the diameter) of the circle

S=x2+12+2gx+2fy+c=0 then the equation of secant AB is S,=S,,-
Proof : Let C be the centre of the circle S=0. Then C=(-g, ) # (x,»,). We know that AB is
perpendicular to CP (seeFig. 1.45). We may suppose thaty, = —f.

Slopeof AB
_ 1
Slope of CP
_ (v +8)
i+
— <P B
Thus the equationof AB is givenby A
(v +g)
y=y == ————(x-x) Fig. 1.45
i+ ®
i-e-5 (y_yl) 0’1 +f)+(x_x1)(x1+g):0
Le., xx, tyy, tgx+fy
= X Vg + Sy
Adding gx, + fy, +c onbothsides to the above equation, we obtain
S, =S5,
Note thatif y, =—f then the equation of secant isx=x,.
1.4.27 Solved Problems
1. Problem : Find the mid point of the chord intercepted by
X2+y?=2x—10y+1=0 .. (1)
on theline  x—-2y+7=0. .. (2)

Solution : Let P(x,, y,) be the mid-point ofthe chord intercepted by the circle (1) onthe line given
by (2).
The equation of secant along the chordis S, =S |
ie, xx tyy —(x+x)-5@p+y)+1l= X4 yi=2x —10y, +1
ie, x(x,—1)+yy,—5)— (X +yi —x=5»)=0 ..(3)
Equations (2) and (3) represent the same chord
- -1 _y-5_ —(x +y0 =X = 5p)

1 -2 7
x =K+1 (4

= K(say)
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vy, =—2K+5 ..(5)
x12+y12—x12—5y1=—7K ... (6)
Substituting (4) and (5) in (6) we get
(K+12+(-2K+5)2—-(K+1)?-5(-2K+5)=-7K
Le., 5K?-2K=0

K=0 ork =~
=0 or —5.

For K=0, thepoint(x,,y,)=(1,5) whichis nota point on the chord x—2y+7=0. Hence K=0
rejected.

2 7 21
ForK= _, thepoint (x,y,) =

5 575
7 21
.. Midpoint of the chord is (g’ ?j

Other Method

Let Cbe the centre of the circle. Then C(1,5). LetP(x,,y,) be mid point of the chord intersected by (2)
onthecircle(1). Then (x,y,)is the foot of the perpendicular of C to the chord given by (2).

We have (by aresult proved in Intermediate Mathematics - IB Text Book) that
x—-1_y»-5_ -(1-10+7)

1 -2 (1+4)
) x-1_y-5_ 2
iLe., 1 ) 5
(1,2
175 N 5
7 21
Thus 55 is the mid point of the given chord.

2. Problem : Findthe locus of mid-points of the chords of contact of x* +y* = @’ from the points lying on
the line Ix + my +n = 0.

Solution : Let P(x,,y,) be apoint on the locus. Then the point P is the mid-point of a chord of the circle
x*+y?=a? (1)
and this chord is chord of contact of a point lying on

Ix+my+n=0 ..(2)



i.e.,the pole of this chord is on the line given by (2). The equation ofthe chord ofthe circle (1) having
P(x,,y,)asitsmidpointis

xx, +yy, = X+ yi
ie., xx1+yy1—(X12+y12)=O ..(3)
The pole of (3) withrespectto the circle (1) is

O 4yD) =Gy

2 2
a a)ﬁ]

(by Theorem 1.4.11)

1.e. 2 2° 2 2
’ Xty oty

This point lies on the line given by (2)

2 2

ax a
[ 5 12+m2y12+n:0
Xty Xt

atz(lx1 +my1)+n(x12 + ylz) =0

Hence the locus of P is a?(Ix + my) + n(x*+y?)=0.

Exercise 1(d)

I. 1. Findtheconditionthatthe tangents drawn from (0, 0) to
S = x?+)?+2gx +2fy+c=0be perpendicular to each other.

Find the chord of contact of (0, 5) with respect to the circle x> +y? — 5x +4y—2=0.
Find the chord of contact of (1, 1) to the circle x*>+3)?=9.

Find the polar of (1, 2) withrespect tox?+3)?=7.

Find the polar of (3, —1) with respect to 2x>+2)?=11.

Find the polar of (1,-2) with respectto x>+ —10x— 10y +25=0.

Find the pole of ax + by + ¢ =0 (c # 0) with respect to x> +? =72,

Find the pole of 3x + 4y — 45 =0 withrespecttox*>+y?>—6x—8y+5=0

Find the pole of x — 2y +22 = 0 with respect to x> +? — 5x + 8y + 6 =0.

S T R T e T O

_
e

Show that the points (-6, 1) and (2, 3) are conjugate points with respect to the circle
x2+y?=2x+2y+1=0.

—
—

. Show that the points (4,2) and (3,—5) are conjugate points with respect to the circle
x?+)?=3x=5y+1=0.



12.

13.

14.
15.

II. 1.
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Find the value of k if kx+3y—1=0, 2x+y+5=0 are conjugate lines with respect to the circle

x2+y?=2x—4y—4=0.

Find the value of k if x+y—5=0and 2x+ ky — 8 =0 are conjugate with respect to the circle

x2+y?=2x-2y—1=0.

Find the value of & ifthe points (1,3)and (2, k) are conjugate with respect to the circle x*> +3?=35.

Find the value of k ifthe points (4,2) and (k, —3) are conjugate points with respect to the circle

X2 +y?=5x+8y+6=0

Find the acute angle between the tangents drawn from (3, 2) to the circle x?+3?—6x+4y—2=0.

Find the acute angle between the pair of tangents drawn from (1, 3) to the circle
x?+y?-2x+4y—-11=0.

Find the acute angle between the pair of tangents drawn from (0, 0) to the circle x> +)?— 14x+2y+

25=0.

4. Findthelocus of Pif the tangents drawn from P to x> +)? = a? include an angle o.

III. 1.

Find the locus of Pifthe tangents drawn from Pto x> +)? = a? are perpendicular to each other.

. Findthe slope ofthe polar of (1, 3) with respectto the circle

x?+)? —4x—4y—4=0. Also find the distance from the centre to it.

Ifax+by+c=0isthe polarof (1, 1) withrespect to the circle
x*+y?+4x+2y+1=0 andH.C.F. of a, b, c is equal to one then find a® + b + 2.

Find the coordinates ofthe point of intersection of tangents at the points where

x+4y—14=0 meets the circle x> +1?> —2x +3y—5=0.

Ifthe polar of the points on the circle x* +)? = a* with respect to the circle x> +)? = b? touches the circle
x?+y?=c? thenprove that a, b, c are in Geometrical progression.

Tangents are drawn to the circle x> +3? = 16 from the point P(3, 5). Find the area of the triangle
formed by these tangents and the chord of contact of P.

Find the locus of the point whose polars with respect to the circles x> +3? —4x — 4y —8=0 and
x%+)?—2x+6y—2=0are mutually perpendicular.

Find the locus of the foot of the perpendicular drawn from the origin to any chord of the circle

S = x?+)?+2gx+2fy+c=0 which subtends a right angle at the origin.

1.5 Relative Positions of two circles

The number of common tangents that can be drawn to two given circles depend on their relative positions.

We shall describe the various possible relative positions of two circles. First, letusrecall thatany two intersecting
common tangents of two circles and the line joining the centres of the circles are concurrent, equivalently the

point of intersection of two common tangents (if exists) of two circles and the centres of these two circles are

collinear. Inthis section we learn the different possible relative position of two circles and the number of common

tangents exists in each case.



1.5.1 Definition Sz

A straight line L is said to be a

Common tangent

common tangent to the circles S=0 and
S'=0 if it is tangent to bothS=0 and
S'=0 (see Fig. 1.46).

Fig. 1.46

1.5.2 Definition

Two circles are said to be touching each other if they have only one common point (see
Fig. 1.47(a), 1.47(b))

/
4 YA

Fig. 1.47(a) Fig. 1.47(b)

1.5.3 Relative positions of two circles

Let C,, C, be the centres and r, r, be the radii of two YA
circles S=0and S'=0respectively. Furtherlet C,C, represents
the line segment from C, to C,. The following cases arise with

regard to the relative position of two circles.

Q)] C]C2 >r tr,

In this case the two circles will be apart 5 >X
1.e., one will be away from the other Fig.1.48
(see Fig.1.48). ya
i CC,=r +r,
Inthis case the two circles touch each other externally
(see Fig.1.49). e P
5 >X

Fig. 1.49




(iii) |r1 —r2| <C1C2 <r tr,

In this case the two circles intersect in two distinct

points (see Fig.1.50).

i) C,C,=|r -1
The two circles touch each other internally (see

Fig.1.51)inthis case.

v) C1C2 < |r] - r2|
In this case the two circles do not intersect / touch

and one circle will be completely inside the other (see
Fig.1.52).

1.5.4 Note
IfC ,C,=0 then the centres ofthe two circles coincide

and they are concentric circles (see Fig. 1.53).
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Y/\
\
\/
5 >X
Fig. 1.50
YI\
.P
(6] > X
Fig.1.51
YI\
Ch
5 >X
Fig. 1.52
YA
S > X
Fig. 1.53

Before the discussion on the number of common tangents in the above cases, we give a proof of a useful
result. Inthe next two sections the figures are drawn without drawing the axes for convenience.

1.5.5 A useful result

Let (i) C, and C, be the centres of two circles (ii) , and r, are radii of these circles (iii) one pair of

common tangents meet C,C, inPand other pairmeetin Q (see Fig. 1.54). Letthese common tangents meet the
circlesat T|,T), T,,T,, T, T, T,and Ty as shownin Fig. 1.54. Then APC, T, and APC, T, are similar triangles.

]’ 2’ 37 4’ 57 6’



Similarly AQC, T,, AQC, T aresimilar,

T, — cQ )
C, Ty C,Q
i_ GQ
) C,Q

. Thepoints Pand Q divide C, C, intheratio of theradii (i.e., 7, : 7).
1.5.6 Common tangents, Centre of similitude

Now we discuss the number of common tangents that exist for the cases specified in the section 1.5.3

Case (i) : Each of the given pair of circles lies in the exterior of the otheri.e., C,C,>r, +7..
Subcase (i) : 1 # r, (r,,7,areradii ofthe circles)

Fig. 1.55
In this case, there is a possibility of having two pairs of common tangents. The pair of common

tangents intersecting at a point on the line segment C,C, is called transverse pair of common tangents

and the pair of common tangents intersecting at a point not in @ (see Fig. 1.55)is called as direct
pair of common tangents. The points P, Q are collinear with the centres C, and C, of given circles. The
point of intersection of transverse pair of common tangents P is called the internal centre of similitude and
the point of intersection of direct pair of common tangents Q is called external centre of similitude. Note
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thatPdivides C,C, intheratior, : r, internally and Qdivides C C, inthe same ratio externally. Alsonote

that C,C,>r, +r,. Inthis case the number of distinct common tangents is 4.

subcase (ii) : C,C, >r tr, and r, =r,. Inthis case the direct common tangents are parallel and the
external centre of similitude doesn’texist. (see Fig. 1.56).

Fig. 1.56

To find the equations of parallel common tangents, suppose the tangent equationas y=mx+c. The
slope m=slope of C,C,. From this fact the value of m isknown.

_ | m(=g,) — fi+c |
«/1+m2

Using the above equation we can find c. In this case the number of common tangents is 4.

n (radius is equal to perpendicular distance)

Case (ii) : CC, =rtr

Given circles touch each other externally (see Fig. 1.57).

Fig. 1.57

Inthis case the internal centre of similitude Pis the point of contact of two given circles. At Pthereis only
one common tangent. Through Q, there will be two common tangents. In this case the number of common
tangents s 3.

Case (iii) : [r, —r,| < C,C, <rtr,

(i.e., Given circles intersecting each other)



Fig. 1.58

In this case the internal centre of similitude does not exist.
Only two common tangents through Q can be drawn (see Fig.1.58)

Case (iv): C,C,= |r,— 1, |

(i.e., Givencircles touch each other internally)

Inthis case internal centre of similitude does not exist ¢
and the external centre of similitude Q is the point of contact
ofthe two circles. Only one common tangent exists at Q.

Thus the number of common tangents in the present case is
one (see Fig.1.59)

Fig.1.59

case (v): CC, < ]rl -, |
(i.e.,one circle lies entirely inthe interior ofthe other circle)

In this case the number of common tangents is zero
(see Fig. 1.60).

Fig. 1.60

1.5.7 Solved Problems

1. Problem : Show that four common tangents can be drawn for the circles given

by x*+y?—14x+6y+33=0 .. (1)
and x2+12+30x-2y+1=0 ..(2)
and find the internal and external centres of similitude.

Solution : Centres of the given circles are C, = (7, -3) and C, = (=15, 1) and radii of given circles are
r=5r,=15.

Now  C,C, =/(7+15)%+(=3-1)°> =10+5.
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r +r,=20
C1C2>r1+r2 (.-' C1C2 =‘\l500, r1+r2=‘\l400)
o Four common tangents exist for the given circles (by 1.5.6 sub case(i))
Now r,:r, =5:15=1:3.
The internal centre of similitude

_ ( A (MH+ME15) B )+ D) (1)]

3+1 ’ 3+1

{2

The external centre of similitude

_ ((3) M-O (=15 3(=3)-D (1))

b

3-1 3-1
= (18, =5).
2. Problem : Prove that the circles
x*+3)?—8x—6y+21=0
and x2+y?=2y—-15=0
have exactly two common tangents. Also find the point of intersection of those tangents

Solution : Let C,, C, bethe centresand |, 7, be theradii of circles given by (1) and (2) respectively. Then

C,=4,3),C,=(0,1); r,=2andr,=4.
.. C,C, =420 =245
[r,—r)|=12—4|=2andr +r,=6.
ry=r|<C, Cy<r tr, ('-'\/Z<V20<\/%)
.. Given circles intersect each other and have exactly two common tangents.
Now r :r,=2:4=1:2.
The external centre of similitude is

8-0 , 6-1 = (8,5)
2-1 2-1 '
Thus the point of intersection of common tangents is (8, 5).
3. Problem : Show that the circles — x*+)*—4x—6y—12=0

and x2+y?+6x+18y+26=0

touch each other. Also find the point of contact and common tangent at this point of contact.

(1)
- (2)

Solution : Let C,, C, be the centres of the circles (1) and (2) and r, 7, be the radii of these circles. Then

C,=(2,3), C,=(-3,-9); r, =5, r,=8.



Now  C,C, =+(2+3)+(3+9)* =13

rFtr,=5+8=13

wCC,=htn-
.. The given circles touch each other externally.
The pointof contact P(x,y,) divides C,C, intheratior :r,=5:8.

16-15 24—45
- Pl z( 815 8+5 )

_ (L -2
137 13

The common tangent at this point of contact is

(1R
13 13 13 13
e, Sx+12y+19=0.
4. Problem : Show that the circles x> +y*> —4x — 6y — 12 =0. (D)
and 5(x*+3)?)—8x—14y—-32=0 .. (2)
touch each other and find their point of contact.

4 17
Solution : Here the centres of (1) and (2) are C, = (2, 3),C, = (E ) gj . Theradiiof (1)and (2) arer, =5,

r,=3and C,C, =2.
Note that C,C, =|r, -7,

Hence the circles (1) and (2) are touch each other internally. The point of contact Pdivides C,C, inthe
ratio 5 : 3 externally.

4 7
©)]¢)) —5(5) 3)3) —5(5)

s P= ,
3-5 3-5

= (-1, -1).
Thus the point of contact of the given circles is (—1,—1).
Now we shall derive the combined equation of the pair of tangents drawn from an external pointtoacircle.

1.5.8 Theorem : The combined equation of the pair of tangents drawn from an external point P(x,, y,)

tothecircle S=0 is SS,, = S?.
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Proof v

Suppose that the tangents drawn from
Ptothecircle S=0 touchthecircleat Aand B
(see Fig.1.61). P

The equation ofABis S, =0.

B
Q(xy,1,)

Fig. 1.61
Le. xx, tyy, tgx+x)+f(y+y)+c=0 .. (1)
Let Q(x,,y,) beany pointon these tangents. Now the locus of Q will be the equation of pair
oftangents drawn from P.

The segment PQ isdivided by the line AB (whose equationis S, =0) intheratio —S : S,
~ PB:QB=-S,:S, or S:S

accordingas S| S,,<0or S ,S,>0

12 12

PB

:> RN

QB

But PB = /S;; and QB = ,/S,, (lengthsoftangents fromPandQ)

S|
SIZ

)

BB _ S, 3
QB S,, ..(3)

From (2)and (3), we get
Sh_ Su
sz Sx

S8, = Sh

Hence the locus of Q(x,, ,) is

S, S =St
1.5.9 Solved Problems
1. Problem : Find the equation of the pair of tangents from (10, 4) to the circle x* + ) = 25.
Solution : Here (x,,y,)=(10,4). By Theorem 1.5.8, the equation of the pair of tangents is
givenby (100 + 16 —25) (x*>+y*—=25)=(10x+4y—25)
ie.,  9x?+80xy—75y%*—500x — 200y +2900 = 0.



2. Problem : Find the equations to all possible common tangents of the circles
x?+y?=2x—6y+6 =0

and x*+y? =1

Solution : Let C,, C, bethe centres and |, , be the radii of the circles given by (1) and (2). Then

C,=(1,3); C,=(0,0); r,=2; r,=1. Here C,C, =10, 7, +r,=3,|C,C,|>r +r,andr, = r,.

1
Here there exist four common tangents. The centres of similitudes are (g’ 1) and (—1,-3). The

required common tangents are given by

2
(X +y2-1) (é+1—1) = (§+y—lj

and *+y* =1 (1+9-1)=(-x-3y-1)?
Equation (3) is equivalentto
4> +3xy-3x-9y+5=0
ie., -1 (4y+3x-5)=0
Now equation (4) can be expressed as
(x+1) 4x-3y-5)=0
From equations (5) and (6), we get the equations of common tangentsas y—1=0,

3x+4y—-5=0,x+1=0 and 4x—-3y-5=0.

Exercise 1(e)

I. 1. Discusstherelativeposition ofthe following pair of circles

i x>+’ —4dx—-6y—12=0, (i) x*+y*+6x+6y+14=0,
¥ +)?+6x+18y+26=0 X +)y?=2x—4y—-4=0

(i) (x—2)*+(@+1)>=9, (iv) x>+y*=2x+4y—-4=0
(x+1)*+(-3)*=4 x> +y*+4x—6y—-3=0

2. Findthe number of possible common tangents that exist for the following pairs of circles.

i) x*+y’+6x+6y+14=0, (i) x*+)y*—4x-2y+1=0,
x?+y?=2x—4y-4=0 x?+y?—6x—4y+4=0

(i) x*+)?—4x+2y—-4=0 (iv) x*+y*=4,

x?+)?+2x—6y+6=0 x?+y?—6x—-8y+16=0

(D
)

(3
o (4)

(5

.. (6)



II.

I11.
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(V) x*+y*+4x-6y—-3=0
x*+y)?+4x -2y +4=0.

. Findthe internal centre of similitude for the circles

x*+)?+6x-2y+1=0 and x*+)?-2x-6y+9=0

. Findthe external centre of similitude for the circles

X2+ =2x—6y+9=0 and  x?+y?=4.

. (i) Showthatthe circles x*+)?—6x—2y+1=0, x*+)?+2x—8y+ 13 =0touch each other.

Find the point of contact and the equation of common tangent at their point of contact.

(i) Showthatx*>+3)?—6x—9y+13=0, x>+)?—2x—16y=0 touch each other. Find the point

of contact and the equation of common tangent at their point of contact.

. Find the equation of the circle which touches the circle x> +3? — 2x — 4y —20=0 externally at (5, 5)

withradius 5.

. Find the direct common tangents of the circles x> +y?+22x —4y—100=0and

x?+3?=22x+4y+100=0.

. Find the transverse common tangents of the circles x> + y> — 4x — 10y + 28 = 0 and

x*+)?+4x—6y+4=0.

. Find the pair of tangents from (4, 10) to the circle x> +)?=25.
. Find the pair of tangents drawn from (0, 0) tox?>+3?+ 10x+ 10y +40=0.
. Find the equation of the circle which touches x> +3? —4x + 6y — 12=0at (-1, 1) internally with a

radius of 2.

. Findall common tangents of the following pairs of circles.

(i) x2+12=9 and x2+)?—16x+2y+49=0
(ii) x> +)y?>+4x+2y—4=0 and x*+)?—4x—-2y+4=0.

. Find the pair of tangents drawn from (3, 2) to the circle x> +3? — 6x + 4y —2=0.
. Find the pair of tangents drawn from (1, 3) to the circle x> +)? — 2x+4y— 11 =0 and also find the angle

between them.

. Find the pair of tangents from the origin to the circle x* +y? +2gx+2fy+c=0 and hence deduce a

condition for these tangents to be perpendicular.

. From a point on the circle x> +3)?+2gx +2fy +c= 0 two tangents are drawn to the circle

x?+y?+2gx+2fy+esino+ (g2 + £ ) cos’a=0 (0<o<m/2). Prove that the angle between them
is 20



®
0.0

®
0.0

7
0'0

@
0.0

[ Key Concepts]

The locus ofapoint in a plane such that its distance from a fixed point in the plane is always the same is

calledacircle.

The equation of a circle with centre (4,k) and radius ris (x — h)* + (v — k)* =1

The equation of a circle in standard form is x? +y? =2

The equation of a circle in general form is x*> +3? +2gx+2fy + c=0andits centre is (—g,—f), radius

is \/g2+f2—c.

The intercept made by x?+)?+2gx+2f+c=0
(i)onX-axisis 24/g? —¢ if g?>c

(i) on Y-axisis 24/ f? —¢ of f?>c.

Ifthe extremities of a diameter ofa circle are (x,,y,) and (x,, y,) thenits equation is

(x=x) (@=x,) + (=3 (=) =0

The equation of a circle passing through three non- collinear points (x,y,), (x,,,) and (x5, ;) is
v oy 1l oq »n 1 xoo 1 XN G

x, ¥y, 1 (x2+y2)+ ¢ Y, 1 x+|x, ¢ 1| y+|x, ¥, ¢c,|=0.

X3 y3 1 c; oy 1 oo 1 X3 Y3 G

where ¢, = —(x7 +y?)

The centre of the circle passing through three non- collinear points (x,,y, ), (x,,»,) and (x;,,)is

q y 1 x ¢ 1

¢ vy, 1 X, ¢ 1

c; y3 1 X ¢y 1
x oy 1 v on 1
(=2) | x y 1 (=2)|x y, 1
x5y 1 Xy 1

The parametric equations of a circle with centre (4, k) and radius (> 0) are given by
x=h+r cos0
y=k+rsin0 0<0<2m




| Mathematics - IIB |

Apoint P(x,,y,)is an interior point or on the circumference or an exterior point ofacircle

S=0& S, S0

The power of P(x,, y,) withrespectto the circle S=0is S .

ApointP(x,,y,) isaninterior point or on the circumference or exterior point of the circle S=0 < the

power of P with respectto S =0 is negative, zero and positive.

Ifastraight line through a point P(x,, y,) meets the circle S=0at A and B then the power of Pis equal
to PA. PB.

The length of the tangent from P(x,, y,) to S=01s /S

The straight line L =0 intersects, touches or does not meet the circle S =0 according as
[<r,I=rorl>r where /isthe perpendicular distance from the centre of the circle to the line L =0

and ristheradius.

For every real value of m the straight line y=nx+ 1+ m? isatangentto the circle x2+)?=r2.

If risthe radius of the circle S = x?+)? +2gx +2fy+c=0then for every real value of m the straight
line
ytf=m(x+g) £ ryl+m?

will be atangent to the circle.

If P(x,,y,) and Q(x,,y,) are two points on the circle S =0 then the secant’s ( iﬁ) equationis
S 5, =
The equation of tangentat (x,, y,) of the circle S=0 is S, =0.

If 0,,6, aretwo pointson S = x? +)? +2gx+2fp+c=0 then the equation of the chord joining the
points 6,60, is

()C+g) COos (61;262) + (y+f) Sin(61;62)= rcos(—algezl

The equation of the tangent at 6 of the circle S=01is (x +g) cos O+ (y+/)sinO=r.

The equation ofnormal at(x,,y,) of the circle

S=0is(x=x) (¥, +/)=-y)x +g=0.
The chord of contact of P(x,,y,) (exterior point) withrespecttoS=0isS,=0.

The equation of the polar of a point P(x,, y,) with respecttoS=0 is S, =0.

\




j’? P(x,, ) Tangent at P Chord of contactat P Polar of P \
Interior Doesnot Doesnotexist S, =0
ofthecircle exist (notdefined) (Pisdifferent from
the centre of the circle)
onthecircle S,=0 S,=0 S, =0
Exterior of Doesnot
the circle exist S, =0 S, =0

®

% Thepole of Ix+my+n=0with respectto S=01is

Ir’ mr
g~ fh
lg+mf —n lg+mf —n
where ris the radius of the circle.
< Thepolar of P(x,, y,) withrespect to S = 0 passes through Q(x,,,) < the polar of Q withrespect to
S =0passes through P.
< Thepoints(x,,y,) and (x,,y,) are conjugate points with respectto S =0if S,, =0.
% Twolines/ x+my+n,=0, Lx+my+n,=0 are conjugate with respect to
2

Xty =a® o a(l,l,+mm)=nn,.

< Twopoints P, Qare said to be inverse points with respect to S=0if CP. CQ =72 where C is the centre
and risradius of the circle S=0.

< If(x;,y,)isthe mid-point of a chord of the circle S =0 then its chord equationis S, =S .

«» The pair of common tangents to the circles S=0, S” =0 touching ata point on the line segment C,C,
(C,, C, are centres of the circles) is called transverse pair of common tangents.

<+ The pair of common tangents to the circles S=0, S’ =0 intersecting ata pointnotin C,C, iscalled as
direct pair of common tangents.

% The pointofintersection of transverse (direct) common tangents is called internal (external) Centre of

similitude.
<> Situation No.of common tangents
1. CC, >r+r, 4
2. r+tr,=CC, 3
3. |r1—r2|<m<rl+r2 2
4. CC,=|r—-r,| 1
5. CC,<|r -1, 0

% The combined equation of the pair of tangents drawn from an external point P(x , y,) to the circle
\ SZOiSSSHZSlz. f
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Historical Note

Itisnot easy to trace the origin of the studies on circle. Babylonians, ancient Egyptians, Greeks,

Chinese and Indians contributed to the studies on circle to begin with.

Probably the first writings about the circle and the circular shapes are in Rigveda. For construction of
Yagna Vedikas - sacrifical altars, many geometrical shapes were inuse. These arereferred to in sulbasutras.

Ever since the shape of a circle was identified there were attempts to find the circumferences and areas of

the circles. 7

Answers

Exercise 1(a)

L 1. () x*+)*—4x+6y-3=0 (i) x*+y*+2x—4y-20=0
(iii) x*+y*—2ax+2by—2ab=0 (iv) x*+3?+2ax+2by+2b>=0
(v) x*+y*—2xcoso— 2ysino =0 i) x*+)?+14x+6y+42=0

(vil) 4x%+4y? +4x+72y+225=0 (viii) 36x?+36y? — 180x + 96y — 1007 =0

(iX) 4x>+4)?—8x—56y+175=0 x) x2+)y?=81=0
2. x*+)*+8x+6y=0 3. X*+y*—4x-6y-3=0
4. X?+y*-13=0 5. xX*+)?+6x—8y—11=0

6. a=2, radius = \/ﬁ/4

7. a=3; b=0; radius= «/@/6, center = (%, —%j .
8. g=-2; f=-3; radius =5 9. g=4; f=3; radius =5
10. ¢=-23
5
11. (i) centre=(2,4); radius = /61 (i) centre=| > 115 radius = /13 /6

4
(i) centre=(—1,2); radius= E (iv) centre=(-3,—4); radius=11



12.

13.

II. 1.

III. 1.

3 19 3 1 21

v) centre=(1, ——j; radius=£ (vi) centre| —, ——|; radius=£
2 2 4 2 4
c mc

Vi) centre= ; > radius =

v \/1+m2 \/1+m2 wre

(viil) centre=(—a, b); radius=a.

(@) x*+)y*=5x-8y+16=0 (i) x*+)*+x+y—24=0

(iii) x?>+)*—9x—8y+20=0 (iv) xX*+)y?=5x-Ty+14=0

(v) X¥*+3?=10x-2y+6=0 i) x*+3?=3x+1=0

(vi)) x*+3?=8x—-5y=0 (vii) x?+3?—5x—8y+13=0.

(1) x=2co0s0,y=2sinf, 0<0<2m

. 3 3.

(i) x=—cosO; y=—sinb, 0<0<2n

2 2 -
7 7 .
(iii) x=\/:cose, y=\/:s1n9, 0<0<2m
2 2

(iv) x=3+8cos0, y=4+8sinf, 0<0<2m

(v) x=2+5co0s 0, y=3+5sin0, 0<0<2m

(vi) x =3+5c0s 0, y=—2+5sin0, 0<0<2m

x2+y?+2ax+2py— (B*+¢*) =0 2. (i) (-1, -3) (ii) (-5,-12)

S X2+ 4+ 2x—2y-23=0 4. x4y —6x-8y+15=0

X2+ —6x—4y—156=0 6. 3(x*+)")—14x-67=0

i x*+y*—4x—6y+11=0 (i) x*+y*—22x—4y+25=0

(i) x*+y*+x—12y+5=0 (iv) 3(x*+»*)—-29x—-19y+56=0

V) x2+1? =2x-2y =0
) y y
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2. () xX*+)y’+4x+3y =0 (i) x*+y*+6x+4y=0
L,

L=

5. ()x*+)?=17x=19y+50=0 (i) x*+)*+12x+12y+7=0

(i) 49(x*+3?)+280x—259y+245=0 (iv) x*+3)?—24x+16y—52=0.

Exercise 1(b)

I. 1. (1) interior (i1) exterior (ii1) exterior ~ (iv) exterior
2. (1) 44 (i) 0 (i) 10 (iv) —24
3. 1) 2 (i) 5 (i) /34
I. 1. k=-5 (2) k=2
L 1. 5(x*+3%)—60x—126y—212=0 2. 4x+6y+9=0

Exercise 1(c)

L 1. () 4x—3y—43=0 (i) 4x—3y+7=0
@) 2x+3y+39=0 @) x+y-7=0
2. () x+y+1=0 (i) 2x+y—11=0
@) 1lx—-13y+28=0 @) y=2
I. 1. 46 2. W7

3. 2Ja*-p? 4. xX*+)y?—4dx—-6y+12=0
5. X+ +6x—8y+16=0 6. x=4++5, x=4-+5

7. x+3y—-10=0
x=3y—-10=0

L 2,2
III. 1. AB =2 CZ—L conditionisi2+i2=i2
(a*+b%) a* b* ¢

3. X*+)?+4x—-6y+8=0 4. 5x+y—-17=0, x-5y+7=0



5. 2x=y—=1=0; x+2y-3=0

6. (5,1) 7. (1,-1) 8. x+y+1+542=0
9. x+3y-2+542 =0 10. x=y+1+2/5=0 11. ¥®*+)2=2x—4y-3=0
12. X2+y?=2x—-4y—-4=0 or 25(x*+)?)—26x+68y+44=0

13. (2,-3)
Exercise 1(d)
I 1. g2+f%*=2c 2. 5x—14y-16=0 3. x+y-9=0
4, x+2y-7=0 5. 6x—=2y=11 6. 4x+7y—-30=0
—ar? —br?
7. c ¢ 8. (6,8) 9. (2,-3)
12. 2 13. 2 14. 11
15 28
. 3 .
7 7 T
IL 1. Cos™'(= 2. Cos™'(=— 3. =
(8) 0s (25) )
4. x*+y*=a’cosec’(0/2) 5. x*+y*=2a*=0
6. Slope=1,distance=6\/§ 7. 29
Il 1 W2 3 10872
4, x?+3y?-3x+y—-4=0 5.2(x*+y*) +2gx+2fy+c=0
Exercise 1(e)
I 1. (i) toucheachother (i) eachliesonthe exterior ofthe other
(i) toucheachother (iv) Cut each other intwo points
2. (1) 4 @) 2 @) 3

@iv) 3 v) 0



II.

I11.

(7
. 92— 16> —18x+96y—135=0, Cos 1(—)

2 4. (2
.(0,2) . (2,6)

3 14
(@) (ga?], 4x—-3y+6=0 (1) (5,1), 4x-7y-13=0

. X2 +y?—18x—16y+120=0

. 3x+4y-50=0, 7x-24y-250=0

. x=1=0, 3x+4y-21=0

. 75x% = 9y% — 80xy +200x + 500y — 2900 = 0

. 3x?—10xy+3)?=0.

5x2+ 57— 2x+6y—18=0

. (1) 4x-3y—-15=0, 12x+5y—-39=0

y—3=0, 16x+63y+195=0
(i) y=2=0, 4x-3y—-10=0
x—1=0, 3x+4y-5=0

. x*=152—6x+60y—51=0

25

(=), gHf2=2e
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Chapter 2

System of Cincles

“All man's miseries derive from not being able to sit
quietly in a room alone”
- Blaise Pascal

Introduction

In this chapter, we shall discuss the angle
between two intersecting circles and obtain a
condition for their orthogonality. Also, we shall learn
about the radical axis of two circles, its properties,
common chord, common tangent of two circles and

the radical centre.

2.1 Angle between two intersecting circles

We have learnt that two circles will intersect
each other if the distance between their centres lies
between the absolute value of the difference oftheir
radii and the sum of their radii. For such circles we

define the angle between them.

Ptolemy
(ca. 83-161)

Ptolemy, was a Greek -Egyptian
mathematician,  geographer,
astronomer, and astrologer who
flourished in Alexandria, Roman
Egypt. The first notable value of 7
after that of Archimedes, was given
by Ptolemy of Alexandria, as 377/
120 i.e., 3.1416. His famous book
was Almagest.
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2.1.1 Definition T
YA i

The angle between two intersecting circles is defined T,

as the angle between the tangents at the point of intersection

of the two circles (see Fig. 2.1) .’
>X

T, PT, isthe angle between the circles at P.

7z

Fig. 2.1

2.1.2 Note

If two circles S=0, S’ =0 intersect at P and Q then the angle between the two circles at
the points P and Q are equal.

2.1.3 Theorem : If (i) C,, C,are the centres of two given intersecting circles (ii) d = C,C,
(iii) r,, r, are radii of these circles (iv) 0 is the angle between these circles, then

d* - r12 - r22
cosO =
2"'1 5)
Proof: Let Pbe a point of intersection of two given circles. Letthe YA
tangents drawn to two circles at P intersect the line joining the centres
: P
atT and T, (see Fig. 2.2). Then LT PT,=6.
e b VIR

Consider ~ZCPC, = ZC PT,+ £T,PC, \/

=90°+90°- 0 <

= 180°-6 0 >X

Fig. 2.2

From AC,PC,, we have
C,C; = C,P2+C,P2-2(C,P) (C,P) cos £C,PC,
ie, d =r2+r2=2rr, cos(180°-0)

d> —r12 —r22
cos = —2
nn

Note that cos 0 is independent of the point of intersection (coordinates of the point of intersection
are not involved). Therefore, the angle at Q is also equal to 6.
2.1.4 Theorem : [f Ois the angle between the intersecting circles
x*+)?+2gx+2fy+c=0 (1)
and x2+12+2gx+2fy +c'=0 .. (2)
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c+c’ —2gg" -2 ff
2\/g2+f2—c \/g'2+f'2—c/
Proof : Let C,, C, be the centres and r,, r, be the radii of the two given circles (1) and (2). Then

7”2 7”2 ’

C,= (=g ) Cy= (=g, r=Ng +f =c; r,=yg?+f2-c"

By Theorem 2.1.3, we have
(&=’ +(f =P+ -0~ (g7+ =)

2\/g2+f2—c \/g'2+f'2—c’

then cosO =

cosO =

c+c'—2gg -2 ff
2\/g2+f2_c \/g/2+f,2_cl

1e., cosO =

2.1.5 Solved Problems

1. Problem: Find the angle between the circles
Xy Hdx—14y +28=0 (1)
X2 +y?+4x-5=0 - (2)
Solution : Here g=2; f=-7; c=28; g'=2; f'=0; =-5.
Let 0 be the angle between the circles (1) and (2). Then by Theorem 2.1.4. we have

_ 28-5-2(2) (2)-2(-7)(0)

e_
O J4+49-28 4+ 0+5
— 11
0 = 60°.

Hence the angle between the two given circles (1) and (2) is 60°.
2. Problem: [fthe angle between the circles
X +y?—12x—6y +41=0 (D)
and x>+’ +hkx+6y—-59=0 ..(2)
is 45° find k.

Solution: Here g=-6; f=-3; c=41;g’=§; f'=3; ¢=-59.

Given that 6 =45°.
. By Theorem 2.1.4, we have
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41-59-2(-6) (];)— 2(=-3)(3)

cos45% = >
24/36+9-41 \/k4+9+59
) 1 3k
ie., —_— =
V2 %
24— +68
4
= k=44

2.1.6 Definition

Two intersecting circles are said to be orthogonal if the angle between them

is a right angle (i.e., 90°)

2.1.7 Condition for orthogonality
Let the two intersecting circles be given by
x2+ 32+ 2gx + 2 +c=0
and x2+)2+2gx+2fy+c'=0
These two circles are orthogonal
= ctc’~2g8'~2ff" =0 (By Theorem 2.1.4)
PN N P
& 2ggtf)=crc.

Thus, the condition for orthogonality of the two intersecting circles (1) and (2) is

2gg'+ff) = ctc'

2.1.8 Note

(D
2

(1) Two intersecting circles are orthogonal if and only if the square of the distance between their

centres is equal to the sum of the squares of their radii. In this case, a tangent of one circle at the

point of intersection will be normal to the other circle and hence it passes through the centre of the

other circle.

i1) Iftwo circles are orthogonal, then &° = r? + r2 where d is the distance between the centres of the
g i 2

circles andr, r, are their radii.
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2.1.9 Theorem

(1) if S=0 S' =0 aretwo circles intersecting at two distinct points, then S—S'= 0 (or S'—S=0)

represents a common chord of these circles.

(i) i S=0 S" = 0 are two circles touching each other, then S —S' = 0 (or S'— S = 0) is a common

tangent.
Proof: Let
S= x*+)?+2gx+2f+c=0 (1)
and S'= X2+)?+2gx+2fy+c' =0 (2)
(i) Let P(x,,y,), Q(x,,y,) be the points of intersection of (1) and (2).
Consider S—S'=0
2(g-g)x+2(f~y+(c—c)=0 - (3)
Clearly the points P, Q lie on (3), since S,,=0, S,,=0, S|, =0,S’,=0.

Further, the equation (3) is linear in x and y and hence it represents a line. Therefore

S — S'=0 s the equation of common chord of circles (1) and (2).
(i1) Let(1)and (2) touch each other atP(x,, y,)
Consider S—S'=0

e, 2(g-g)x+2(f—fy+(c—c")=0 ..(3)
. . . . . (g-8)
P(x,,y,) is apoint on (3) and it represents a line and the slope of (3) is = _W
p— ’ +
The slope of the line joining the centres of the circles = f, N I
-8 t8

Thus the line given by (3) is perpendicular to the line of centres and it passes through the point of
contact of the two circles. Hence it is a common tangent.

2.1.10 Theorem
O 1
S=x2+y?+2gx+2f+c=0 (1)
and

L= I+my+n=0 ..(2)
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are the equations of a circle and a straight line respectively intersecting each other, then
S+ kL = O represents a circle passing through the points of intersection of S =0 and L =0 forall

real values of k.
(i) If
S=x2+y?+2gx +2f+c=0 (1)
and
S'= xX2+y*+2g'x+2g'y+c'=0 ..(3)

are the equations of two intersecting circles, A and u are any real numbers such that A+ u # 0,

then AS + uS' = 0 represents a circle passing through the points of intersection of (1) and (3).
Proof
(i) Let P(x, y,) be one of the points of intersection of (1) and (2).
Clearly for any real number k
S+kL = (x*+)?+2gx +2fy+c) tk(Ix+my+n)=0

passes through P(x,, y,). Hence S + kL = 0 represents a circle for any real number &
(problem 10 of 1.1.7)

(i) Let
L=S-S=0 .. (4)
By Theorem 2.1.9 (i) and (ii), L is the common chord or tangent.
Consider
AS+uS'=0 ..(5)
where A, U are any real numbers such that A +pu #0

Clearly it passes through the points of intersection of (1) and (3). Further equation (5)

is equivalent to

S+kL =0 .. (6)

—U
k = .
A+

Now S + kL = O represents a circle, hence AS + uS'= 0 represents a circle. Hence the theorem.

where



| System of Circles |

2.1.11 Note

(i) Theequation AS+ uS'= 0can also be writtenas S+ kS'= 0. For, since ..+ # 0, we can assume

that & # 0 and hence we can express AS + uS'= 0 by S+ kS" = 0 where k = % #—1.

(i1) Ifk=—IthenS +kS'=S—-S"'= Orepresents aline passing through the points of intersection of the
circles S = 0and S' = 0. In this case it is the common chord.

(iii) If the circles S = 0 and S" = 0 touch each other i.e., the points of intersection coincide, then

S —S'=01is a common tangent to the circles.

2.1.12 Solved Problems

1. Problem : Find the equation of the circle which passes through (1, 1) and cuts orthogonally each of

the circles
X+ =8x—-2y+16=0 (1)
and
x4+ —dx—4y—1=0. .. (2)
Solution : Let the equation of the required circle be
x2+ 2+ 2gx + 2/ +c=0 ..(3)
Then the circle (3) is orthogonal to (1) and (2).
.. By applying the condition of orthogonality given in 2.1.7, we get
2g(—4) +2fi-1) = c+ 16 .. (4)
and
2¢(-2)+2/(-2) =c—-1 ..(5)
Given that the circle (3) is passing through (1, 1)
12+ 12+2g(1) +2/1) +c=0

2¢+2f+c+2=0 ... (6)
Solving (4), (5) and (6) for g, f and ¢, we get
7 23
=—-—, =—, C = _5
8773 6

Thus the equation of the required circle is

3(x*+y?) — 14x +23y—15=0.
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2. Problem : Find the equation of the circle which is orthogonal to each of the following three circles

Y+ 2x+ 17y +4=0

x>+’ +7x+6y+11=0
and X4+ —x+22y+3=0
Solution : Let the equation of the required circle be

x?+y?+2gx+2fy+c =0

(1)
- (2)
- (3)

e (4)

Since this circle is orthogonal to (1), (2) and (3), by applying the condition of orthogonality given

in2.1.7, we have
17
2(g)(1) +2(f)(7) =c+4

2(g) (%) +2(F)3)=c+ 11

and

2(g>(—%) F2(F)AD = c+3

Solving (5), (6) and (7) for g, f, ¢ weget g=-3, f=-2and c=-44.

Thus the equation of the required circle is x> +)? —6x — 4y — 44 =0.
3. Problem : Ifthe straight line represented by
xXcosotysino=p
intersects the circle

XAy =

at the points A and B, then show that the equation of the circle with AB as diameter is

(x2 +y2_a2) _2p(xcos Og-l-ySll’l Ol_p) = 0

Solution : The equation of the circle passing through the points A and B is (by Theorem 2.1.10(1))
..(3)

x*+y*—a*)+A(xcosa+ysina—p) =0
The centre of this circle is

[_kcosoc _ksinoc)

b

2 2

.. (5)

.. (6)

o (7)

(D)

)
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Ifthe circle given by (3) has AB as diameter then the centre of it must lie on (1).

_ﬂcosa(cosa) B ﬂsma(sina) -p.
. A ) .5
ie., _E(COS o+ sin“ o) =p
ie., A= -2p.

Hence the equation of the required circle is
(x*+3y*—a*)—2p (xcoso+ysino—p)=0.
4. Problem : Find the equation of the circle passing through the points of intersection of the circles
X2 +y?=8x—6y+21=0 (1)
x4+ =2x—-15=0 . (2)
and (1, 2).
Solution : The equation of circle passing through the points of intersection of (1) and (2) is
(x> +)y?=8x—6y+21)+ Mx*+)?—2x—15)=0 ..(3)
Ifit passes through (1, 2), we obtain
(1+4-8-12+21)+M1+4-2-15)=0
ie., 6+M-12)=0
ie., A=12
Hence the equation of the required circle is
(x*+y?=8x—6y+21)+ %(x2+y2—2x— 15)=0
ie., 3(x*+3?)—18x— 12y +27=0.

Exercise 2(a)

I. 1. Find k if the following pairs of circles are orthogonal
(1) x*+y*+2by—k=0, x*+y*+2ax+8=0.
(i) X*+)?—6x—8y+12=0, x*+)?—4x+6y+k=0
(i) x> +3y?=5x—14y-34= 0, > +y*+2x +4y+k=0
(iv) X¥*+y?+4x+8=0, x> +y*—16y+k=0



II.

I11.
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. Find the angle between the circles given by the equations

(1) ¥*+)y?=12x—-6y+41=0, x> +)>+4x+6y—59=0.
(i) x> +y*+6x—10y—135=0, x*+)?—4x+14y-116=0.

. . 3n
. Show that the angle between the circles x* + 3% = a?, x> +y* = ax + ay is R

. Show that the circles given by the following equations intersect each other orthogonally

(1) x*+y?=2x-2y-7=0, 3x>+3)?=8x+29y =0.
(i) ¥+’ +4x-2y—11=0, x*+)?—4x—-8y+11=0
(iii) x*+)?=2x+4y+4=0, x> +)?+3x+4y+1=0

(iv) x¥*+y*-2Ix+g=0, ¥*+y*+2my—g=0

. Find the equation of the circle which passes through the origin and intersects the circles

below, orthogonally
(1) ¥*+y?—4x+6y+10=0, x>+ + 12y +6=0.

(i) x¥*+)?—4x—-6y—-3=0, x*+)?-8y+12=0

. Find the equation of the circle which passes through the point (0, —3) and intersects the

circles given by the equations x?> +3? — 6x + 3y + 5 =0 and x> + y?> — x — 7y = 0 orthogonally.

. Find the equation of the circle passing through the origin, having its centre on the line

x +y = 4 and intersecting the circle x* + y? — 4x + 2y + 4 = 0 orthogonally.

. Find the equation of the circle which passes through the points (2, 0), (0, 2) and orthogonal to

the circle 2x? +2)? + 5x — 6y + 4 = 0.

. Find the equation of the circle which cuts orthogonally the circle

x%+y? — 4x + 2y — 7= 0 and having the centre at (2, 3).

. Find the equation of the circle which intersects the circle x> +y? — 6x + 4y — 3 = 0 orthogonally

and passes through the point (3, 0) and touches Y-axis.

. Find the equation of the circle which cuts the circles x> + 3? — 4x — 6y + 11 = 0 and

x? +1?—10x—4y + 21=0 orthogonally and has the diameter along the straight line 2x + 3y =7.

. If P, Q are conjugate points with respect to a circle S = x? +1? + 2gx + 2fy + ¢ = 0 then prove

that the circle PQ as diameter cuts the circle S = 0 orthogonally.
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4. If the equations of two circles whose radii are a, a’ are S =0 and S’= 0, then show that the

circles 5 +S—, =0 and 5. i = 0 intersect orthogonally.
a a a a

5. Find the equation of the circle which intersects each of the following circles orthogonally.
(1) X¥*+y?+2x+4p+1=0, ¥*+)?=2x+6y—-3=0,2(x*+)?) +6x + 8 —-3=0
(i) x> +y*+4x+2p+1=0,2(x>+y*) +8x+6y—-3=0, x>’ +)? +6x—-2y—-3=0

6. Ifthe straight line 2x + 3y = 1 intersects the circle x* +y? = 4 at the points A and B, then find

the equation of the circle having AB as diameter.

7. If x +y =3 is the equation of the chord AB of the circle x> + y? — 2x + 4y — 8 = 0, find the

equation of the circle having AB as diameter.

8. Find the equation of the circle passing through the intersection of the circles x> +? = 2ax and

. .X
x? +y? = 2by and having its centre on the line — — % =2.
a

2.2 Radical axis of two circles

In this section we shall define the radical axis of two circles and study its properties. Also we
discuss about the common chord, common tangent of two circles and the radical centre of three circles.

2.2.1 Definition

The radical axis of two circles is defined to be the locus of a point which moves so that its

powers with respect to the two circles are equal.

2.2.2 Theorem: If

S=x?+y*+2gx+2fy+c=0 . (1)
and

S'=x>+)y?+2gx+2fy+c'=0 .. (2)

are two non-concentric circles, then the radical axis of (1) and (2) is a straight line represented by

S-8"=0.
ie., 20g-g)x+2(f—f )y +(c—c")=0 ...(3)
Proof : Let P(x,, y,) be a point on the radical axis. Then by the definition of radical axis, we have that
the powers of P(x,, y,) with respect to (1) and (2) are equal
x12+y12+2gx1+2ﬁ/1+c = x12+y12+2g’x1+2f'yl+c’

(+.- The power of P(x,, y,) with respect to the circle S=01s S,,)
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ie,  2(g—ghx T2(f—f"y, +(c—c)=0
Hence the equation of the locus of P(x,, y,) is
2(g—ghx +2(f=f"y +(c—c")=0 ..3)

Note that this equation represents a straight line, since the circles are non-concentric and therefore
g # g'or f# f'. Equation (3) can be writtenas S —S'=0.

2.2.3 Note
(1) Forthe concentric circles with distinct radii, the radical axis does not exist, since there is no point

whose powers with respect to two distinct concentric circles are equal. However if their radii are
equal then the locus is the whole plane.

(i1) While using the formula S —S' = 0 to find the equation of the radical axis, first reduce the equations
of the circles to general form (if they are not in general form).

(i11)) Whenever we consider the radical axis of two circles, it means that two circles are non-concentric.

2.2.4 Examples

1. Example : Let us find the equation of the radical axis of the circles
S=x+)?-5x+6y+12 =0 (1)
and S'= x*+y*+6x—4y—14 =0 .. (2)
The given equations of circles are in general form. Therefore their radical axis is
(S-S"=0)
ie, llx—10y—26 = 0.
2. Example : Let us find the equation of the radical axis of the circles
2x2+2)?+3x+6y—-5=0 (1)
and 3x2+3)2=Tx+8y—11=0 .. (2)

Here, the given equations of the circles are not in the general form. Reducing them into general
form, we get

I ) 5
X“+y " +—x+3y—-—=0,
YT,

s 9 8 11
X +y' ——=x+=-y-—=0
and y 3 3)’ 3

Now the equation of radical axis of given circles is

3 7 8 5 11
—+—=—kx+|3-=py+t-—=—+—1|=0
2 3 3 2 3

ie., 23x+2y+7=0.



| System of Circles |

2.2.5 Theorem : The radical axis of any two circles is perpendicular to the line joining their centres.

Proof : Letthe equations of two non-concentric circles be

S=x?+)?+2gx+2fy+c=0 (1)
and S'=x2+y?+2gx +2f"y+c' =0 ..(2)
Then (-g, =) # (g, —f"). The equation of the radical axis is
20g-g)x+2(f—f" Yy +c—c"=0 ..(3)
.. The slope of the radical axis
__(&=8)
f=1)
The slope of the line joining the centres is
T N i
-g'tg g~ ¢

Since (the slope of radical axis) x (slope of the line joining centres)

=) (1)
f-rH (g-¢)

the radical axis is perpendicular to the line joining the centres.

b

2.2.6 Theorem : Ifthe centres of any three circles are non-collinear, then the radical axes
of each pair of the circles chosen from these three circles are concurrent.

Proof : Let the equations of three circles (whose centres are not collinear) be

S=x?+)?+2gx+2f+c=0 (1)
S'=x2+3)?+2gx +2f"y+c' =0 .. (2)
and S"=x?+)?+2g"x+2f"y+c" =0 .. (3)

(see Fig. 2.3, the figure is drawn for the case of all centres lying in the first quadrant)
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The radical axis L, (say) of (1) and (2) is

L, =2(g-gx+2(f—f")y+(c-c)=0 .. (4)
Similarly the radical axis L, (say) of (2) and (3) is

L,=2(g"-g"x+2(f"-f"y+(c'"-c") =0 ..(5)
and the radical axis L;(say) of (3) and (1) is

L= 2(g"-gx+2(/"=f)y+(c"-c) =0 - (6)

Now L,+L,+L,= 0OgivesthatL, L, and L, are concurrent.

2.2.7 Definition

The point of concurrence of the radical axes of each pair of the three circles whose centres are
not collinear is called the radical centre.

2.2.8 Note

The lengths of tangents from the radical centre to these three circles are equal.

2.2.9 Example

Let us find the radical centre of the circles

x2+y?=2x+6y=0 (D)
X2 +y?—4x -2y +6=0 .. (2)
and ¥2+y?—12x+2y+3=0 ..(3)
The radical axis of (1) and (2); (2) and (3); (3) and (1) are respectively
x+4y-3 =0 .. (4)
8x—4y+3 =0 .. (%)
10x+4y-3 =0 ... (6)

Solving (4) and (5) for the point of intersection we get | 0, %J which is the required
radical centre. Observe that the coordinates of this point satisfies (6) also.

2.2.10 Theorem : Ifthe circle

S=x2+y?+2gx+2f+c=0 (1)

cuts each of the two circles
S" = X2 +y?+2gx+2fy+c' =0 . (2)
and §” = x2+y*+2g"x+2f"y+c" =0 ..(3)

orthogonally then the centre of S = 0 lies on the radical axis of S'=0 and S" = 0.
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Proof: The radical axis of (2) and (3) is
2(g'=g"x+2(f"= "y +(c'=c") =0 - (4)
We shall prove that (=g, —f)) (which is the centre of S =0) lies on (4).
Since the circles (1) and (2); (1) and (3) are orthogonal, we have
2gg'+2ff"'=c+c’ ..(5)
2gg"+2ff" =c+c" ... (6)
Subtracting (6) from (5), we get
2(g'~g"g+2(f'~f")f = ¢'~c"
Le., 2(g'-8")(=8) T 2(/"= /")) +(c'=c") =0
Therefore (—g, —f) lies on (4). Hence the centre of (1) lies on the radical axis of (2) and (3).

i.e., ifany circle cuts two other circles orthogonally then the centre ofthe circle lies on the radical

axis of other two circles.
2.2.11 Theorem : The radical axis of two circles is
(1) the ‘common chord’when the two circles intersect at two distinct points.
(i1) the ‘common tangent’ at the point of contact when the two circles touch each other.

Proof : Let the equations of two circles be
S=x*+)*+2gx+2fp+c =0 (1)
S'= x2+)?+2gx+2f"y+c' =0 .. (2)

and the radical axis of these circles be L, then
L=S-S=2g-gx+2(f-f)y+c—c'" =0 ..(3)
(1) Let the circles given by (1) and (2) intersect at

N
two distinct points P and Q (see Fig. 2.4) v »
By Theorem2.1.9, S —S'=0is the common chord.
Hence (i) is proved.
— Common chord
0 >X
Fig. 2.4
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(i1) Let the two circles given by (1) and (2) touch each other at P (see Fig. 2.5, 2.6)
By Theorem 2.1.9 (ii) the common tangent is S — S'= 0 i.e., L= 0. Hence (ii) is proved.

N YA

Pe ) PG )

— Common
— Common tangent ¢
angent
>X >
O 0
Fig. 2.5 Fig. 2.6

2.2.12 Theorem : The radical axis of any two circles (whose common tangent is not perpendicular to

the line join of their centres) bisects the line joining the points of contact of common tangent to the

circles.
Proof: Let

S=x2+)?+2gx+2f+c=0 (D)
and S'=x2+y?+2gx+2fly+c' =0 .. (2)

be two circles and T,, T, be the points of contact of common tangent to the circles S = 0 and

S'=0 (see Fig. 2.7)
A\
We know that radical axis of two circles is

perpendicular to the line joining the centres of the circles
(by Theorem 2.2.5) and the common tangent is not P
perpendicular to the line joining the centres

(hypothesis). Therefore common tangent and radical Radical axis

S
axis intersect at a point. 0 >X

Fig. 2.7
Let T, T, (common tangent) intersect the radical axis of (1) and (2) at P(x,, y,).
The powers of P with respect to the circles S =0 and S’ = 0 are equal. Therefore
PT,.PT, = PT,. PT (by Theorem 1.2.11)
PT. = PT..
1.e., P_T1 = P_T2

i.e., Pisthe mid point of T, and T,. Thus the radical axis of the two circles bisects each of their

2

common tangents (see Fig. 2.7)
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2.2.13 Solved Problems

1. Problem : Find the equation and length of the common chord of the two circles.

S=x*+)?+3x+5y+4=0 (1)
and S'=x2+)?+5x+3y+4=0 .. (2)
Solution: The common chord of two intersecting circles is YA
their radical axis (by Theorem 2.2.11(1)). &
S
.. The equation of common chord is S —S'=0. Go*‘\&
e, R -3 N\ - Sy
oC
The centre of the circle (1) is 2
3 5 ) 3 A
C, (say) = D) andradius 7, = E C,
(see Fig.2.8)
C,D = length of the perpendicular from C, to AB Fig. 2.8
3 (23
12 2
VO +(-1)°
= L
V2
Length of the common chord AB
=2xAD
= 24/AC? -C,D?
2. 1
=22 2
=4,
2. Problem : Show that the circles
S=x*+)?-2x-4y-20=0 .. (1)
and S'=x>+)?+6x+2y-90=0 .. (2)

touch each other internally. Find their point of contact and the equation of common tangent.

Solution : Let C, C, be the centres and r, r, be the radii of the given circles (1) and (2).
ThenC,=(1,2); C, = (-3,-1); r,=5; r,=10.
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CC, = distance between the centres =5
Ir,—r)|=15-10]=5=C,C,.

.. The given two circles touch internally. In this case, the common tangent is nothing
but the radical axis (by Theorem 2.2.11(i1)). Therefore its equation is S-S'=0.

ie., 4x+3y—-35=0

Now we find the point of contact. The point of contact divides C;C, intheratio5:10
i.e., 1:2 (externally)

.. Point of contact
_(DE3)=-2() DD -2(2)
1-2 1-2
=(5,95).
3. Problem : Find the equation of the circle whose diameter is the common chord of the circles
S =x>+)?+2x+3y+1=0 . (1)
and S'=x>+)?+4x+3y+2=0 ..(2)

Solution : Here the common chord is the radical axis of (1) and (2). The equation of the radical axis is
S-S =0.

ie, 2x+1=0 .3

The equation of any circle passing through the points of intersection of (1) and (3) is
(S+AL=0)

(> +y?+2x+3y+ 1)+ AM2x+1)=0
X2 +? 20+ Dx+3y+(1+X)=0 .. (4)

The centre of this circle is (— (A+1), %) .
Forthecircle (4),2x+ 1 =01s one chord. This chord will be a diameter of the circle (4)
if the centre of (4) lies on (3).
2{-(A+1)} +1=0
1

= A=-—.
2

Thus the equation of the circle whose diameter is the common chord of (1) and (2) is
(Put A = - % in equation (4))
2(x* +y*) +2x +6y+1=0.
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2.2.14 Theorem: LetS'=0, S""=0, §'""=0 be three circles whose centres are non-collinear and no two

circles of these are intersecting then the circle having
(1) radical centre of these circles as the centre and

(1) length of the tangent from the radical centre to any one of these three circles as radius cuts the

given three circles orthogonally.

Proof: Let Cbe the radical centre ofthree given circles. Asno two circles of given three circles are mntersecting

the point Cis exterior to these circles. Choose C as the origin. Let the equations ofthe three circles be

S' =x?+y*+2gx+2fy+c'=0 (D)
S" = X2+ )2 +2g "+ 2f "y +c" =0 .. (2)
g = 2 +y2+2gmx+2fmy+cm =0 ..(3)

Since, the originis an external point to these circles,
wehave ¢/, c”, ¢ are positive.
The lengths ofthe tangents from C to circle (1), (2) and (3) are
Je' e , Je o respectively

Since, these lengths are equal, we have Je' = Je' =" = say .(4)

Now, the equation ofthe circle with centre C and radius 7 is
XAy —2=0 ..(5)

Then 2[g".0+/".0] =0= ¢'—r2 (using (4))
Hence, the circle (5) cuts the circle (1) orthogonally.

Similarly, the circle (5) cuts the circles (2) and (3 ) orthogonally.
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Thus the circle having radical centre of three circles as the centre of the circle and having the length of

tangent from the radical centre to one of these circles as radius cuts the given three circles orthogonally.

2.2.15 Example

Letus find the equation of a circle which cuts each of the following circles orthogonally

S'=x>+)?+3x+2y+1=0 .. (1)
S" =x?+y?—x+6y+5=0 ..(2)
and " =x2+y*+5x—-8y+15=0 ..(3)

The centre of the required circle isradical centre of (1), (2) and (3) and the radius is the length
ofthe tangent from this point to any one of the given three circles. First we shall find the radical

centre. For, theradical axis of (1) and (2) is

x—y=1 .. (4)
and the radical axis of (2) and (3) is

3x—=Ty=-5. ..(5
The point of intersection (3,2) of (4) and (5) is the radical centre of the circles (1), (2) and (3).

The length of tangent from (3, 2) to the circle (1)

= 37427 43(3)+2(2) +1 = 343,
Thus the required circle is
(x=3)+ (-2 = (33
ie., x2+y?—6x—4y—14=0.

Exercise 2(b)

I. 1. Find the equation of the radical axis of the following circles.
(1) ¥*+y?=3x—-4y+5=0, 3(x*+)?)—=Tx+8 —11=0
(i) X?+)y*+2x+4y+1 =0, x> +)*+4x+y=0
(i) X>+)?+4x+6y—7=0, 4(x>+)?)+8+12y-9=0
(iv) X?+y?=2x—-4y—-1=0, x>+’ —4x—-6y+5=0
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I1.

I11.

2. Find the equation of the common chord of the following pair of circles.

i) ¥*+y*—dx—-4y+3=0, x*+)?-5x—6y+4=0
(ll) x2+y2+2x+3y+1=()’ x2+y2+4x+3y+2=0
(i) (x—aP+@-bP=c (x-bP+(y-aP=c(a# b)

. Find the equation of the common tangent of the following circles at their point of contact

@) x*+y>+10x—-2y+22=0, x*+)?+2x—8y+8=0
(i) X?+)*—8y—4 =0, X>+)°—-2x—4y=0

. Show that the circles x> +3? —8x—2y+8=0 and x> +)?—2x+ 6y + 6 =0 touch each other

and find the point of contact.

. Ifthe two circles x> +y?+2gx +2fy =0 and x> +)? + 2g'x + 2f'y = 0 touch each other then

show that f'g = fg".

. Find the radical centre of the following circles.

(i) X2+)2P—4x—6y+5=0, x>+ —2x—4y—1=0, x2+)2—6x—-2y=0
(11) x2+y2+4x_7 :0, 2x2+2y2+3x+5y_9:0’ x2+y2+y:0

. Show that the common chord of the circles x?> + 3> — 6x — 4y + 9 = 0 and

x> +3? —8x — 6y +23 =0 is the diameter of the second circle and also find its length.

. Find the equation and length of the common chord of the following circles.

() ¥*+)?+2x+2p+1=0, x> +)*?+4x+3y+2=0
(i) X¥*+)y>=5x—-6y+4 =0, X>+)°-2x-2=0

. Prove that the radical axis of the circles x> +3? +2gx + 2/ + ¢ =0 and

x>+ 3%+ 2g" + 2f"y + ¢' = 0 is the diameter of the latter circle (or the former bisects the
circumference of the latter) if 2g'(g—g") +2f'(f—f=c— "

. Show that the circles x*> +y? + 2ax + ¢ = 0 and x> + ? + 2by + ¢ = 0 touch each other if

1 1 1

2 "2 T
a” b

C

. Show that the circles x> +)? —2x=0and x*>+)?+ 6x — 6y +2 =0 touch each other. Find the

coordinates of the point of contact. Is the point of contact external or internal?

. Find the equation of the circle which cuts the following circles orthogonally

(i) X*+)y*+4x-7=0, 2x2+2y?+3x+5y-9=0, x> +)?+y=0

() x*+y*+2x+4y+1 =0,2x*+2)>+6x+8 -3=0,x>+)?-2x+6y—-3=0
(i) x>+)*+2x+ 17y +4=0,x>+)? +Tx+6y+11=0, x> +)?—x+22y+3=0
(iv) X¥*+y*+dx+2p+1=0, 2(x>+))+ 8 +6y-3=0,x>+1>*+6x—2y-3=0
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R/
0.0

R/
0.0

[Key Concepts]

We denote x2+ )2 +2gx+2fy+cbySand x¥2+1)2+2 ¢ x+2 f y+ by §

IfC,, C, arethe centres and |, 7, are radii of two intersecting circles S= 0 and S’=0, C,C,=dand

2_ 2 2
Oisthe angle between them, then cos 8 = a-n-n
2nr,

I£ 0 is the angle between the two intersecting circles S=0and S'=0 then

cos O = c+c —2gg —2ff

B 2\/g2+f2—c \/g'2+f'2—c'

Two circles S=0and S"=0 are orthogonal iff 2(gg’+ ff') = c+¢’.

If S=0, S’=0 are any two intersecting circles and A, u are any two real numbers such that
A+u # 0 thenAS +uS’ =0 represents a circle passing through the intersection of the circles
S=0,S8=0.

IfS=0,S'=0 areany two intersecting circles and k is any real number where k # —1, then S
+ kS’ = 0 represents a circle passing through the points of intersection of them.

If S =0 and a straight line L = 0 intersect then for any real number &, S + kL = O represents a
circle passing through their intersection.

The equation of the common chord of two intersecting circles S=0, S'=0is S — S'=0.

The equation of common tangent at the point of contact when the circles S = 0, S"= 0 touch
each otheris S — S'=0.

The radical axis of two circles is defined to be the locus of a point which moves so that its
powers with respect to the two circles are equal.

The radical axis of S=0and S'=0is S — S'=0.

Ifthe centres of any three circles are non-collinear, then the radical axes of each pair of circles
chosen from these three circles are concurrent.

The radical axis of two circles S=0and S’ =01is

(1) the common chord when the two circles intersect at two distinct points.

(i1) the common tangent at the point of contact when the circles touch each other.

The radical axis of any two circles bisects the line segment joining the points of contact of

common tangent of these two circles.

\
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Historical Note

Ptolemy believed in the geocentric theory of revolving universe and stated that the other heavenly
bodies revolved in epicycles and small circles.

The study of circles goes back beyond history. The invention of the wheel was a fundamental
discovery of the properties of a circle.

The first theorems relating to circles are attributed to Thales (624 - 547 B.C.). Book III of

Euclid’s elements deal with properties of circles and related properties.

In India Sulbasutras (First Millennium B.C.) contain a discussion of circles. 7

Answers

Exercise 2(a)

I. 1. () 8 (i) 24 (1) 1 @iv) -8
2. (1) % (i1) 2?75

IL 1. i) 2(x>+)y*)—-T7x+2y=0 (il) x*>+y*?+6x-3y=0
2. 3(x*+yH)+2x+4y —15=0 3. xX*+)y?—4dx—4y=0
4. T(x*+)*)—8x—8y—12=0 5. x> +)?—4x—6y+9=0

IL 1. x> +)y*—6x—6y+9=0 2. ¥*+)y?—4x-2y+3=0

5. (1) x*+)?=5x—14y-34=0 (i) x*+)?—14x-5y-34=0
6. 13(x*+3)*)—4x—-6y—-50=0 7. x*+y*—6x+4=0
8. x?+y?—3ax+by =0

Exercise 2(b)

L 1.6 x+10y—13=0 (i) 2x—3y—1=0

(i) 8x+12y—19=0 (V) x+y—3=0
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2. 6) x+2y-1=0 (i) 2x+1=0
(i) x—y=0
L 1. () 4x+3y+7=0 (i) x—2y-2=0
7
1575
4. (i) (7/6, 11/6) @ 2,1
nL 1. 72
2. (1) 2x+y+1=0 = ii 2y-2=0, 2 14
() 2xty+1=0,77% (if) x+2y-2=0, 2%
5. (l,éj,intemal.
55
6. () x*+)’—4x-2y-1=0 (i) x*+)y*—5x—14y-34=0

(i) x¥*+)y*—6x—4y—44 =0 (iv) x2+)*—14x—5y—34 =0



Chapter 3

Savabiola

“The universe cannot be read until we have learnt the language
and become familiar with the characters in which it is written.
It is written in mathematical language and the letters are
triangles, circles and other geometrical figures”

- Galilei Galilieo

Introduction

In the preceding chapters, we have studied various forms
of'the equations of circles and systems of circles. In this chapter
we shall study about parabola. The name “parabola” (the shape
described when you throw a ball in air) was given by Apollonius
(Ca.262B.C.-Ca.190B.C.).

3.1 Conic Sections

In factcircle, parabola, ellipse, hyperbola, a pair of a straight
lines, a straight line and a point are called as conic sections
because each is a section of a double napped right circular cone
with aplane. These curves have a very wide range of applications
in planetary motion, design oftelescopes and antennas, reflectors
in flash lights etc.

More generally, suppose the cutting plane makes an angle

‘B’ with the axis of the cone and suppose the generating angle of
the cone is a.. Then the section is

(i) acircleif B = % (Fig. 3.1(a))

Apollonius
(ca. 262 - 190 B.C.)

Apollonius was bornin ca. 262
B.C., some 25 years after
Archimedes. He flourished in the
reigns of Ptolemy Euergetes and
Ptolemy Philopator (247-205
B.C). His treatise on conics
earned him fame as “The Great
Geometer”, an achievement that
has assured his fame for ever.
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(i) anellipseif a<p< z , (Fig. 3.1(b))
(iii) aparabolaifo =, (Fig.3.1(c))
(iv) ahyperbolaif 0 <P <a, (Fig.3.1(d))
(v) Degenerated conic sections
We get the degenerated sections when the plane passes through the vertex of the cone.
(a) apointwhen oo<P<Z | (Fig.3.1(e))
(b) astraight line when = a, (Fig. 3.1(f)) a generator of the cone.

(c) apairofintersecting straight lines when 0 <3 < a,, (Fig. 3.1(g), 3.1(h))
It is the degenerated case of a hyperbola.

Note : A pair of parallel straight lines, however, is not a conic section as there is no plane which cuts
the cone along two parallel lines.

/

S S
s :@ —7

N

Fig. 3.1(a) Fig. 3.1(b)

é 5 —
Fig. 3.1(¢) Fig. 3.1(f) Fig. 3.1(g) Fig. 3.1(h)

Fig. 3.1

A conic section, can also be defined as the locus of a point moving on a plane such that its distances
from a fixed point and a fixed straight line are in constant ratio.




It can be proved that these two approaches to define a conic section (as plane section of a cone and
as locus) are equivalent. Butitis beyond the scope of this book. Further, in view ofthe analytic approach
of'the second definition, we shall adopt the same throughout this book.

3.1.1 Conic

The locus of a point moving on a plane such that its distances from a fixed point and a fixed
straight line in the plane are in a constant ratio ‘e’, is called a conic.

The fixed point is called the focus and is usually denoted by S.

The fixed straight line is called the directrix.

The constant ratio ‘e’ is called the eccentricity. -
Directrix

The straight line of the plane passing through the focus
and perpendicular to the directrix is called the axis.

Therefore the locus of a point P moving on a plane such

that % = e (constant) where PM is the perpendicular distance

from P to the directrix, is called a conic M P
If e=1, the conic is called a parabola. ;
If 0 <e<1,the conicis called an ellipse.

S axis

A
\

If e> 1, the conic is called a hyperbola.

v Fig. 3.2
3.1.2 Equation of a parabola

In this section we derive the equation of a parabola in the general form.

Let S(o, B) be the focus and the directrix be Ix + my +n=0. Thus, by definition of the parabola, the
equation of the parabola is

o +-py = IBrmenl
12 +m?
(or)
(x—oc)2+(y—[3)2 — M
P?+m*

a general equation of second degree in x and y.

The equation of the axis of the above
parabola is m(x — o) — I(y — ) = 0. Fig. 3.3

directrix

3.1.3 Equation of a parabola in standard form

To study the nature of the curve, we prefer its equation in the simplest possible form. We proceed

as follows to derive such an equation.
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Let S bethe focus, / be the directrix as shown in Fig. 3.4. Let Z be the projection of ‘S’ on/ and
‘A’ be the midpoint of SZ. A lies on the parabola because SA=AZ. A s called the vertex of the parabola.

Let YAY’ be the straight line through A and parallel to the directrix. Now take 7X as the X-axis and
YY as the Y-axis.

Then A is the origin (0, 0). Let S=(a, 0), (a>0). Then Z = (—a, 0) and the equation of the directrix

is x+a=0. \ AY

M P
S

A\ N Y/
Fig. 3.4

If P(x, y) is a point on the parabola and PM is the perpendicular distance from P to the directrix /,

then S—P—e=l.

PM
(SP)> = (PM)
= (x—al+)y’=(x+a)
32 =4dax.
Conversely if P(x, y) is any point such that y*=4ax then
SP = \/(x—a)2 +y2 = \/x2 +a® —2ax+4ax = \/(x+a)2 =|x+a| = PM.

Hence P(x, y) is on the locus. In other words, a necessary and sufficient condition for the point
P(x, ») to be on the parabola is that y* = 4ax.

Thus the equation of the parabola is y? =4ax.

3.1.4 Remark

(i) Ifthe focus is situated on the left side of the directrix, the equation of the parabola with the vertex
as origin and the axis as X-axisis y?> =—4ax [Since in this case the focus Sis (-a, 0)].

(i1)) The vertex being the origin, if the axis of the parabola is taken as Y-axis, equation of parabola is
x%=4ay or x*>=—4ay according as the focus is above (or) below the X-axis.
(ii1)) IfSlies on/, thenthe locus is a straight line passing through S and perpendicular to /. We take this
case as the degenerated parabola.



3.1.5 Nature of the curve
In this section we shall study the nature of the parabola or trace the curve represented by the

equation y%=4ax , (a>0).

(1) If y=0,then4ax=0andx=0.
.. The curve passes through the origin (0, 0).
(ii) If x=0then »*=0, which gives y=0, 0 (twice). Hence Y-axis is a tangent to the parabola at the

origin.

(iii) Let P(x,y)be any point on the parabola. Since a>0 and y?=4ax, we have x>0and y=++/4ax .
.. Forany positive real value of x, we obtain two values of y of equal magnitude but of opposite
in signs. This shows that the curve is symmetric about X-axis and lies in first and fourth quadrants.

The curve does not exist on the left side of the Y-axis (i.e., second and the third quadrants) since
x>0 for any point (x, y) on the parabola.

(iv) As x increases infinitely, the two values of y also increase infinitely in magnitude. So the two
branches of the parabola lying on opposite sides of the X-axis extended to infinity towards the
positive direction of the X-axis. Hence it is an open curve.

3.1.6 Note

(1) As noted earlier, S is called the focus and the line / is called the directrix of the parabola. For the
parabola y? = 4ax (a > 0), the focus is S(a, 0), directrix is x + @ =0 and axis is y = 0. The point
A(0, 0) is called vertex of the parabola.

(i) Ifthe vertex is at (%, k) and the axis of the parabola parallel to X-axis, then by shifting the origin
to (h, k) by translation of axis and using the result * = 4ax we can obtain its equation as
(v — k)% = 4a(x—h).

3.1.7 Definitions (Chord, focal chord, double ordinate and latus rectum)

Chord : The line joining two points of a parabola is called a ‘chord’ of a parabola.
Focal chord : 4 chord passing through focus is called a ‘focal chord’.

Double ordinate : A chord through a point P on the parabola, which is perpendicular to the
axis of the parabola, is called the ‘double ordinate’ of the point P.

Latus rectum : The double ordinate passing through the focus is called the ‘latus rectum’ of
the parabola.

P
3.1.8 Remark
From 32 = 4ax, for any positive x, P(x, 2+/ax ),

P’ (x, —2+/ax ) are points on the parabola y* =4ax and X<
PP’ is perpendicular to the axis and hence is the double

/

>X

ordinate through P.
P\

Fig. 3.5



3.1.9 Length of the latus rectum

The equation of the parabola is y* = 4ax ...

Let LSL’ be the latus rectum of the
parabola (Fig. 3.6)

Let SL =/, then coordinates of L are (a, /)
L lies on the parabola (1)

(1)

s P=4a.a=4d% .. 1=2a andso, LSL  =2(SL) = 4a,

which is the length of the latus rectum.

3.1.10 Note : When latus rectum is known, the equation of

the parabola is known in its standard form, and the size and

shape of'the curve are determined accordingly.

3.1.11 Various forms of the parabola
(i) y*=4ax (a>0) (Fig.3.7)
Focus =(a, 0).
Equation of the directrix x+a=0.
Axis of the parabola y=0.
Vertex = (0, 0).

(i) y*= —4ax(a>0) (Fig.3.8)
Focus = (—a, 0).
Equation of the directrix x—a = 0.
Axis of the parabola : y=0.

Vertex = (0, 0).

X/
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X’ ¢ >X
VY’
Fig. 3.6
NY
/
A
X’ € o >
S(a, 0) X
S
Il
3
+
=
v
Y/
Fig. 3.7
Y 4 A
S ® A >X
S(—a, 0)
[w]
Il
S
|
, =
Y A4 v

Fig. 3.8



(iv)

v)

(Vi)

Vertex = (h, k).

109
(iii) x2= 4ay(a>0) (Fig.3.9) Y
Focus =(0, a).
Equation ofthe directrix y+a =0. ¢5(0.0)
Axis of the parabola x=0. X< A X
y+a=0 z
Vertex=(0, 0). vY
Fig.3.9
N —a=0
x2 = —day(a>0) (Fig. 3.10) < Y >
A >
Focus= (0, —a). X< >X
95(0,—a)
Equation of the directrix y —a =0.
Axis of the parabola x = 0.
Vertex = (0, 0). JY
Fig. 3.10
(v —k)?>=4a(x - h) (a>0) (Fig. 3.11)
=Y
Focus= (h+a, k). 5
+
Equation of the directrix x -2 +a=0. D
=
Axis of the parabola y—k=0. Al S y—k=0
Vertex = (h, k).
Fig. 3.11
(v —k)?>=—4a(x - h) (a>0) (Fig. 3.12) >
Focus = (h—a, k). I
Equation ofthe directrix x—/4—a=0. >|<
Axis of the parabola y —k=0. g/A »—k=0
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(vii) (x—h)?=4a(y—k)(a>0), (Fig.3.13)
Focus=(h, a+k).

Equation of the directrix y—k+a=0.

®S
Axis ofthe parabola x— 2 =0.
Vertex = (h, k). A
N y—k+a=0
Y x—h=0
Fig.3.13
(viii) (x—h)? = —4a(y—k) (a>0), (Fig.3.14) )
Focus=(h, k—a). < yka=0_
Equation ofthe directrix y—k—a=0. S
® S
Axis ofthe parabola x—/2=0.
Vertex = (h, k).
x—h=0

2
(9 (o2 = S5 (g 315)

Focus=(a, B).
Equation ofthe directrix Ix + my + n=0.

Axis ofthe parabola m(x — o) — I(y — ) =0.

Vertex: PointAin Fig. 3.15. X <

‘/ \ > X
) v directrix

Fig.3.15
3.1.12 Note

By observing equations of the above figures (i) to (viil), we may conclude that the equation of a
parabola

(i) whose axis is parallel to the X-axis is x =2 +my +n.

(11) whose axis is parallel to the Y-axisis y = Ix? + mx + n, where [, m, n are real numbers, [ 0.
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3.1.13 Definition (Focal distance)

YA
The distance of a point on the parabola from M -
PCx, v
its focus is called the ‘focal distance’ of the point. T
|
IfP(x,,y,) is a point on the parabola y* = 4ax :
whose focus is S(a, 0) then from Fig. 3.16 X' _ea->] —>: > X
< Z A 'S N rd
Focal distance of P = SP
= PM T
S
+
= NZ =
= NA+AZ vY’
Fig. 3.16
=Xx,ta

3.1.14 Parametric equations of a parabola

The point (af?, 2at) satisfies the equation y?=4ax ofa parabola for all real values of 7. Conversely
if P(x, y) is a point on y? = 4ax(a > 0) then x >0, a> 0 there exist a /€ R such that x =ar* and
y? =4a(at*) = 4a**> then we get y =2at or —2at. Therefore P is of the form (a, 2at) or (a (—£)?, 2a(~t)).

Hence the parametric equations of a parabola are x = ar?, y = 2at. The point P(af?, 2at) is
generally denoted by the point 7 or P(7) for the sake of brevity.

3.1.15 Notation
Hereafter the following notation will be adapted throughout this chapter.
(i S y* —4dax
(i) S, = 2a(x+x,)
(i) S;, = y,—2a(x; +x,)
(iv) S, = yl2 —4ax,, where (x;,y,) and (x,, y,) are the points in the plane of the parabola

y2 =4ax.

3.1.16 Parabola and a point in the plane

of the parabola Exterior
(outside)

A parabola divides the plane into two disjoint
parts, one containing the focus is called the interior Interior (inside)
ofthe parabola and the other is called the exterior of
the parabola (Fig. 3.17).

Parabola

Fig. 3.17
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LetP(x,,y,) beapoint in the plane of the parabola Ny P(x> 1)
(Fig. 3.18). Draw PM perpendicular to the X-axis to Q/

meet the parabola 1 = 4ax at Q = (x,, 2+/ax; ) and
M(x,, 0). X% >X

o (PM)? =y12, (MQ)? = dax,.

vY’
Fig. 3.18

(i) P lies outside the parabola (i.e., P is an external point) <> (MP)%>(MQ)?
& y12>4ax1 & y12—4ax1>0 & 5,,>0.

Ifx, <0, then the point P lies in Quadrant IT or in Quadrant Il in which case the point P clearly lies
outside the parabola and yl2 —4ax, > 0in this case also.

(ii) Pliesontheparabola < MP=MQ & (MP)?=(MQ)?
= y12=4ax1 = y12—4ax1=O < S,=0.
(iii) P lies inside the parabola (i.e., P is an internal point) < MP <MQ < (MP)? <(MQ)?

= y12<4ax1 = y12—4ax1<0 < 5,,<0.

Thus P(x,, y,) lies outside, on or inside the parabola S = y? —4ax =0 according as Sy 2 0.

3.1.17 Solved Problems

1. Problem : Find the coordinates of the vertex and focus, and the equations of the directrix and axes of
the following parabolas.

(i) »? = 16x (i) x? =—4y (iil) 3’ =9 +5y-2=0 (iv) y’—x+4y+5=0.
Solution
(i) »*=16x, comparing with y? =4ax, we get 4a=16 = a=4.
The coordinates of the vertex = (0, 0).
The coordinates of the focus = (a, 0) = (4, 0).
Equation of the directrix : x +a = i.e.,x +4=0.
Axis of the parabola y = 0.
(ii) x?=-4y, comparing with x> =—4ay, weget4a=4 = a=1.
The coordinates of the vertex = (0, 0).
The coordinates of the focus = (0, —a) = (0, —1).
The equation of the directrix y—a=01.e.,y—1=0.

Equation of the axis x =0.



(iii) 3x2-9x+5y-2=0.
3(:2-3x)=2-5y = 3(?-2x(3)+ §)=2-5p+ ZL.
(x ——) = ( y _Z) comparing with (x — h)? =—4a(y — k) we get
-5 -3 7
a=i5.h=%5,k=7.
. : = -3 1
. Coordinates of the vertex = (4, k) = (2, 4).
7 5Y_(3 4
Z_E)_(7’§)‘

Equation of the directrixisy—k—a=0 1i.e., 6y —13=0.

Coordinates of the focus = (h, k—a) = (%,

Equation of the axisisx—A=0 1i.e., 2x—3=0.
(iv) ¥ —x+4y+5=0 = (y—(-2))>=(x—1), comparing with (y—k)*=4a(x - h),
we get (h, k)=(1,-2)anda= % , coordinates of the vertex (4, k) = (1, -2)

coordinates of the focus (2 + a, k) = (%, - 2)
Equation of the directrix x—/4+a=0 1ie., 4x—-3=0.
Equation of the axis y—k=0. ie., y+2=0.
2. Problem : Find the equation of the parabola whose vertex is (3, =2) and focus is (3, ).

Solution : The abcissae of the vertex and focus are equal to 3. Hence the axis of the parabola is x =3,
a line parallel to y-axis, focus is above the vertex.

a = distance between focus and vertex = 3.
. Equation of the parabola (x — 3)> =4(3) (y + 2) i.e., (x = 3)> = 12(y + 2).

3. Problem : Find the coordinates of the points on the parabola y* = 2x whose focal distance is %

Solution : Let P(x,, y,) be a point on the parabola y? = 2x whose focal distance is % then y; =2x, and

xta=3 = x1+%=% = x; =2
yl2 =2(2)=4 = y, =12
. The required points are (2, 2) and (2, —2).
4. Problem : Find the equation of the parabola passing through the points (=1, 2), (1, —1) and (2, 1)
and having its axis parallel to the X-axis.
Solution: Since the axis is parallel to X-axis the equation of the parabola is in the form of x=/y*+my-+n.
Since the parabola passes through (-1, 2), we have
-1=12)+mQR)+n = 4+2m+n=-1 .. (1)
Similarly, since the parabola passes through (1,—1) and (2, 1), we have
[-m+n=1 ..(2)
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I+m+n=2 ..(3)
Solving (1), (2)and (3) weget /=—Z, m=4% and n=$§.
Hence the equation of the parabolais x= —% y+ %y+% (or) 7y?=3y+6x—-16=0.

5. Problem : A double ordinate of the curve y° = 4ax is of length 8a. Prove that the lines from the
vertex to its ends are at right angles.

Solution : Let P=(af?, 2af)and P’ = (ar?, —2at) be the ends of double ordinate PP’ . Then,

8a=PP’ = 0+ (dat)?® =4at = t=2.

Y 4

- P=(4a,4a), P’ =(4a,—4a) P_
Slope of OP x slope of OP,:(%)(_%):_l »
.. LPOP =7, . ey .
Aliter : Letthe double ordinate be Pp” meeting the axisat L. 000,054 L(44,0)

~. PL=LP’ =4a. If P=(x,4a), then 4a

164> =4ax; = x, =4a (see Fig.3.19). D~

. OL=4a. AOLP isrightisosceles. A
Fig. 3.19

T T T
ZPOL= Z ,similarly ZLOP’ = Z Consequently ZPOP’ = 5 .
6. Problem

(i) Ifthe coordinates of the ends of a focal chord of the parabola y? = 4ax are (x pY)) and(x,y,),
then prove that x x, = az, Yy, = —4a’.

- = .

(ii) Forafocal chord PQ of the parabolay?® = 4ax, if SP=1and SO =1’ then prove that %+ 1 _1
Solution
(i) Let P(x,,»,) = (ar?, 2at,) and Q(x,,y,) = (at3,2at,)) be two end points of a focal chord.
P, S, Q are collinear.
Slope of PS = Slope of GS
2at, _ 2at,

2 2

1t -t =ttt —t,

1ty (t,—t)+(t,—1)=0

1+2,t,=0 = Ht,= -1 .. (D)
From (1) XXy = at12 at22 = 012(1‘2 t1)2=a2

Y, = 2at2at, = 4612(12 t1)=—4a2.

The property holds even if the focal chord is the latus rectum.
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() Let P(atlz, 2at,)and Q(at%, 2at,) be the extremities of a focal chord of the parabola, then

t,t, = =1 (from (1))

1= SP = \(af? —a)’ +Q2at, —0)* = a\J(i? —1)* +42] =a(1 +7)

I'=SQ = \/(atg —a)* +Qat, —0)* = aJ(rg 1) +46; =a(l+8)

(-a)(I' —a) = a5 = a*(t,))° = @ [- 11, =—1]

IV —al+1')=0 = %+ll -1,

7. Problem : If Q is the foot of the perpendicular from a point P on the parabola y* = 8(x=3) to its
directrix. Sis the focus of the parabola and if SPQ is an equilateral triangle, then find the length of side

of the triangle.

Solution : Given parabola 2= 8(x — 3), then its vertex
A=(3,0)and Focus=(5,0) [4a=8 = a=2]since
PQS is an equilateral triangle

SQP =60° = [SQZ =30° (See Fig. 3.20)

From ASZQ we have sin 30° = g—é .
- Side SQ= SZ_ _ 2(SZ)=2(4)=38.

sin30°
Hence length of each side of the triangle is 8.

directrix
A
Q 600 P(xl,yl)
30
’ Al3.0 S

8. Problem : The cable of a uniformely loaded suspension bridge hangs in the form of a parabola. The

roadway which is horizontal and 72 mt. long is supported by vertical wires attached to the cable, the

longest being 30 mts. and the shortest being 6 mts. Find the length of the supporting wire attached to

the road-way 18 mts. from the middle.

A Y F B(36, 24)
N A
N\
\\ /1
N pd 24 mts
24 mfs N A
\\\ P //
X B — O N D S

6 1\“1/1ts | | 6311‘[5 X

P Bridge R Bridge S Q

< 36 mts < 36 mts >

Fig. 3.21
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Solution : Let AOB be the cable [Ois its lowest point and A, B are the highest points]. Let PRQ be the bridge
suspended with PR =RQ=36 mts (see Fig.3.21).

PA=QB =30 mts (longest vertical supporting wires)
OR =6 mts (shortest vertical supporting wire) [the lowest point of the cable is upright the mid-point R of the
bridge]

Therefore, PR=RQ=36 mts. We take the origin of coordinates at O, X-axis along the tangent at O to the

cableandthe Y-axisalong RO . The equation of the cable would, therefore, be x2 =4ay for some a> 0. We get
B=(36,24)and 362=4a x 24.

36x36
Therefore, 4a= =54 mts.
24
If RS=18mts. and SCis the vertical through S meeting the cable at C and the X-axisat D, then

SC isthe length of the supporting wire required. If SC=/mts, then DC=(/—6) mts.
Assuch  C=(18,/-6).
Since Cis onthe cable, 182=4a (/- 6)
18 18x18
T 4a 4
= [=12.

= /-6 6

Exercise 3(a)

Find the vertex and focus of 42 + 12x—20y + 67 =0.

Find the vertex and focus of x%—6x—6y+6=0.

Find the equations of axis and directrix of the parabolay? + 6y —2x+5=0.

Find the equations of axis and directrix of the parabola 4x? + 12x—20y+ 67 =0.
Find the equation ofthe parabola whose focus is S(1,—7) and vertex is A(1,-2).
Find the equation of the parabola whose focus is S(3, 5) and vertex is A(1, 3).

NSk

Find the equation ofthe parabola whose latus rectum is the line segment joining the points (-

3,2)and (-3, 1).

8. Findthe position (interior or exterior or on) of the following points with respect to the parabola 2=
6x, (1) (6,—6) (ii) (0, 1) (i1i) (2,3)

9. Findthe coordinates of the points on the parabola y? = 8x whose focal distance is 10.

10. If(1/2,2)is one extremity of a focal chord of the parabola? = 8x. Find the coordinates of the other
extremity.
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11. Prove thatthe point on the parabola y?=4ax, (a>0) nearest to the focus is its vertex.

12. A cometmovesinaparabolic orbit with the sun as focus. When the cometis 2 X 107 K.M from the

s
sun, the line from the sun to it makes an angle B with the axis of the orbit. Find how near the comet

comes to the sun.

II. 1. Findthelocus ofthe point of trisection of double ordinate of a parabolay? =4ax, (a>0).

2. Findthe equation ofthe parabola whose vertex and focus are on the positive x-axis at a distance ‘a’
and ‘a” fromthe origin respectively.

3. If Land L’ arethe ends ofthe latus rectum of the parabolax?=6y, find the equations of OLand O L’
where ‘O’isthe origin. Also find the angle between them.

4. Findthe equation ofthe parabola whose axis is parallel to x-axis and which passes through the points
(-2,1),(1,2)and (-1, 3).

5. Findthe equation ofthe parabola whose axis is parallel to y-axis and which passes through the points

(4,5),(=2,11)and (-4, 21)

III. 1. Findtheequation ofthe parabola whose focusis (=2, 3) and directrix is the line 2x+3y—4=0. Also
find the length of the latus rectum and the equation of the axis of the parabola.
2. Provethatthe area ofthe triangle inscribed in the parabola y? =4ax is
é |7, =¥,) (0, —¥3) (3 —¥,)| sq. units where y,, y,, v are the ordinates of its vertices.

3. Find the coordinates of the vertex and focus, the equation of the directrix and axis of the
following parabolas.
(i) ¥*+4x+4y-3=0 (i) x¥*-2x+4y-3=0

3.2 Equation of tangent and normal at a point on the parabola

In this section, the condition for a straight line to be a tangent to a given parabola is obtained. The
Cartesian and parametric equations of the tangent and the normal at a given point on the parabola are
derived.

3.2.1 Point of intersection of the parabola y*>=4ax, (a>0) and the line
y=mx+c,(m #0).

Let Y2 =4ax, (a>0) (1)

and the straight line y=mx-+c be given ..(2)

The coordinates of the point of the intersection of the straight line and the parabola satisfy both
the equations (1) and (2) and, therefore, can be found by solving them. Substituting the values of y
from (2) in (1), we have

(mx +c)? = 4ax, ie, m2x2+2x(mc—2a)+c*=0 ..(3)
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This is a quadratic equation in x and therefore has two roots which are distinct real (Fig.3.22(i)) equal

(Fig.3.22(i1)) orimaginary (Fig. 3.22(iii)) according as the discriminant of equation (3) is positive, zero (or)

negativerespectively.
The ordinates of the points of intersectionyy, , y, can be obtained by substituting x|, x,, forxin y
=mx +c.
y=mx+c y=mx+tc y=mete
P <
(@) (i) (iif)
Fig .3.22

3.2.2 Theorem : The condition for a straight line y = mx + ¢ (m % 0) to be a tangent to the parabola

2 =4ax is cm = aor c = a/m.
Proof : The ‘x’ coordinates of the points of intersection of the line y = mx + ¢ and the given parabola are
given by the equation (3) of 3.2.1 i.e.,
m?x?+2x(mc —2a)+c*=0 .. (1)
The given line will touch the parabola < the two points coincide.

< discriminant of (1) is zero

& d(me—2a)*—4m*c2=0

& 16a(a—mec)=0

& a-mc=0 & a=mc (or) c=2.
m

3.2.3 Note
(i) When m = 0, the line y = ¢ is parallel to the axis of the parabola y* = 4ax, i.e., X-axis. Further

2
c
.. The straight line intersects the parabola at the point [E’ c ) , (Fig.3.23).
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(ii)

(iif)

(iv)

(v)

(02/4%

Fig.3.23

a
we have seen y=mx+c, (m  0) is atangent to the parabola )2 =4ax when ¢ = 2 Hence y=mx+ P

a 2a c
is always a tangent to the parabola y*=4ax at (W’ ;) = (Z’ 2c ] whenm % 0.

—2(mc —2a) __ (a-2a) _ a and ordinate

[ from (3) of 3.2.1, the abscissa x, =

2 2 )
2m m m
ma a 2a
W=t —=—.
m m m

Ifm # 0and c=0, then the line y=mx is non vertical and passes through the origin which intersects the

4a 4a
parabola in two points (0, 0) and (W ) E) . Henceitisnotatangent
4a 4a
-+ from (3) of 3.2.1, m*x* —4ax=0 = x=0or P theny=0or P

Observe that for a parabola y?=4ax, there is one and only one tangent, parallel to Y - axis (i.e.,
Y - axis it self) and there is no tangent parallel to X-axis.

Let P(x,, y,) be a point other than origin, on the parabola ¥ = 4ax. If the tangent at P makes an

2 1
angle 0 with y-axis, then 0 # g . We write #=tan 0. Then slope of the tangent = 4 coth= .
Yo
Hence y,=2atand 4ax,=4a*? gives Y4
xo=at* (Fig. 3.24). P
0

If, however, P(x,, y,) is the origin,

e

thenx, = at?, Yo = 2at where 1=0.

So, any point P(x,, y,) on the

parabola y? = 4ax can always be

written in the form (af?, 2at) for

some e R. Fig. 3.24
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3.2.4 Theorem : Tivo tangents can be drawn from an external point (x ;, y ;) to the parabola V2 = 4ax.
Proof : Let P(x,, y,) be an external point to the parabola ¥ =4ax then

S, =y —4ax, >0 (1)

a .
Wehave y=mx+— is a tangent to the parabola y?=4ax for all non zero values of .
m

a
If it passes through the point (x;, y,) then ¥ :mx1+z

discriminant y? —4qx, >0 [from (1)]. The equation being a quadratic in m, has two distinct real

2, _ — :
or mx; —my, +a =0 and its

a .
roots, say, m, andm,. Then y =mx+ 2 and y = myx + —are the two distinct tangents through

m m,
(xlayl)'
3.2.5 Theorem : The equation of the chord joining the points (x,, y,) and (x,,y,) on S =0 is
S, +8,=§,,

Proof: Let P(x,,y,) and Q(x,, y,) be two points on the parabola S = y2 —4ax = 0, then
S,,=0andS,,=0. Consider the first degree equation S, +S,=S ,

Le., {yy,—2alx+x)} +{yy,—2a(x+x,)} =y, —2a(x; +x,)
ie., 4ax—(y, +y,)y+y,»,=0 whichrepresents a straight line.
Clearly (x;,y,)and (x,,y,) satisfiestheequation(1) (- y} —4ax, =0 = y; —4ax,)
- §,+8,=8,, isastraight line passing through P(x,,,) and Q(x,, ).
. The equation ofthe chord PQis S, +S,=S,.
3.2.6 Theorem : The equation of the tangent at P(x,, y ) to the parabola S =0 is S, = 0.
Proof: LetP(x;,y,) and Q(x,,y,) be two points on the parabola S = y? —4ax =0 then S,;=0andS,, =0.
By Theorem 3.2.5, the equation ofthe chord PQis S, +S,=S,, (1)
The chord PQ becomes the tangent at P when Q approaches P
(i.e., (x,,y,) approachesto (x;,»,)).
.. The equation of the tangent at P is obtained by taking limits as (x,,y,) tends to (x,,,)
on either sides of (1).
So, the equation of the tangent at P given by QL_fp (S, +S,) = QL_fp S5
1e., S, +S,=S, [+S, =>S.,,S, = S a8 (xy,1,) = (x,¥))]

25,=0 = S, =0.
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. The equation of the tangent to the parabola S = y* — 4ax = 0 atP(x,,y,) is
S, = yy, —2a(x+x,)=0.
3.2.7 Theorem : The equation of the normal at P(x,;, y,) on the parabola S = 0 is

(y-y)= _%(x_xl)-

Proof : By Theorem 3.2.6, the equation of the tangent to the parabola y? — 4ax = 0 at P(x, y,) 1s
S, = yy, —2a(x+x,)=0.

2
. Slope of the tangent at P is =4 .
M

.. Slope of the normal at P is — A

2a

Hence equation of the normal at P(x,y,)is (y —y,) = — ;—; (x—x,).
3.2.8 Theorem (Parametric form)
(i) Equation of the tangent to the parabola y? = 4ax at a point ‘t"is x —yt + at’ = 0.
(i) Equation of the normal to the parabola y? = 4ax at a point ‘t’is y + xt = 2at + at’>.
Proof : Let P(f) be a point on the parabola y?=4ax then P=(af?, 2af).

(i)  We have equation of the tangent at P(x, ), is yy, — 2a(x + x,) = 0, then replacing (x,,y,) by
(at?, 2at), the equation of tangent is 2at y — 2a(x + ar*) =0 i.e., x—yt+ar* = 0.

(i)  We have equation of the normal at P(x,y,)is (y—y,) = — Zy—; (x—x,) thenreplacing (x,,y,) by

(at?,2at), the equation of the normal is
—2at

(y—2at) = (x—at?)

ie., y+xt = 2at+at.
3.2.9 Number of normals through a given point

(i) The equation of the normal to the parabola y* = 4ax at (af?, 2at) is y + xt = 2at + af*, if this line
passes through (x|, ), then y, +x,/=2at + ar® is ar® + {(2a —x,) -y, = 0. This is a cubic equation
in ‘¢’ and has, at most three real roots.

Hence the number of normals through a given point (x|, y,) to a parabola y2 =4ax is either 1 or 2

or 3 accordingly as the number of distinct real roots of the cubic equation

af+Q2a—-x)t-y,=0is 1 or 2 or 3.
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Criterion for the number of normals

2 —
Write H=%, G=—2L and A=G2+4H? ifx; =2aandy, =0then the number of normals=1.

a a
Assumeeither x, #2a or y, #0
(1) IfA>0thenthe numberofnormalsis I
(@) If A=0thenthe numberofnormalsis2
(i) If A<Othenthenumberofnormalsis3

The proof ofthe above is beyond the scope of this book.

(i) Theequation ofthetangent ‘7’ is yr=2x+ar*. Hence slope of the normal at ¢is

m=—t = t=—m, substituting in the equation of the normal at ¢ (i.e., y+xt=2at +ar’) we get y
3

—mx=—"2am—am’ isy=mx—2am —am>.
. The equation of the normal to the parabola y*=4ax, having slope m, is
y=mx—2am—am’=m (x — 2a — am?).

3.2.10 Solved Problems

1. Problem : Find the condition for the straight line Ix + my + n =0 to be a tangent to the parabola

2 =4ax and find the coordinates of the point of contact.

Solution : Let the line /x + my + n=0 be a tangent to the parabola y* = 4ax at (ar?, 2at). Then the
equation of the tangent at P(¢) is x — yt + ar* = 0 then it represents the given line Ix + my + n=0, then

[ m n -m _—n
—=—=—=t=—>andt=—
1 -t at [ ma

m n )

S—t=—=—=m"a=nl
I ma
2
-9 _
and the point of contact is P(ar?, 2af) = [aliz, lam] or (?, ZZamJ .

2. Problem : Show that the straight line 7x + 6y = 13 is a tangent to the parabola y* —7x —8y + 14 =0
and find the point of contact.

Solution : Equation of the given line is 7x + 6y = 13, equation of the given parabola is
y?—Tx -8y +14=0.

By eliminating x, we get the ordinates of the points of intersection of line and parabola adding the

equations 1> —2y+1=0.
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ie, (3-12=0= y=1,1.
.. The given line is tangent to the given parabola.
If y=1then x =1 hence the point of contact is (1, 1).
3. Problem : Prove that the normal chord at the point other than origin whose ordinate is equal to its
abscissa subtends a right angle at the focus.

Solution : Let the equation of the parabola be y? = 4ax and P(ar?, 2af) be any point (1)

on the parabola for which the abscissa is equal to the ordinate. i.e., a? =2at = t=0ort=2. But

t # 0. Hencethe point (4a, 4a) at which the normal is

y+2x=2a2)+a2)® (or) y=(12a-2x) (2
substituting the value of y=12a—2x in (1) weget (12a—2x)>=4ax (or)

x*—13ax+36a*> = (x—4a) (x—9a)=0 = x=4a,9a
corresponding values of y are 4a and —6a.

Hence the other points of intersection of that normal at P(4a, 4a) to the given parabolais Q(9a,—6a), we have
S(a, 0).

Slopeofthe  §p =my = 20 -2
ope of the T a3
— —6a-0 3
SO = = - _2
Slope of the Q=m, %% —a 1

Clearly m,m,= —1, so that STH.ST)

4. Problem : From an external point P, tangent are drawn to the parabola y? = 4ax and these tangents
make angles 0,, 0, with its axis, such that tan 6, +tan 0, is a constant b. Then show that P lies on the
line y = bx.

Solution : Letthe coordinates of Pbe (x,,y,) and the equation of the parabola y?=4ax. Any tangentto

the parabolais y = mx + ﬁ, if this passes through (x,,y,) then
m

a .
v, =mx, +— lLe, mle -my, +a =0 (1)
m

Lettheroots of (1) be m, m,. Thenm +m,= RN tan0, + tan0, = A
X X,

[ Thetangents make angles 0, 0, with its axis (x - axis) then their slopes m, =tan 0, and m,=tan6,].

sob=2= v, = bx,.

X

. P(x;,y,) liesonthe liney = bx.
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5. Problem : Show that the common tangent to the parabola y? = 4ax and x* = 4by is
xal3 + yb!/3 + q23p23 =

Solution : The equations of the parabolas are )2 =4ax .. (1)
and x2=4by .. (2)
Equation ofany tangentto (1) is ofthe form y = mx + a4, ..(3)

m
Ifthe line (3) is atangentto (2) also, the points of intersection of (2) and (3) coincide.

m
which should have equal roots. Therefore its discriminant is zero. Hence

166%*m* — 4m (—4ab) =0
16b(bm* + am) =0

m(bm>+a)=0. But m # 0.
1/3/p1/3

Substituting the value of y from (3) in (2), we get x* = 4b (mx + i] i.e., mx?—4bm*x —4ab =0

Som=-a substituting in (3) the equation of the common tangent

1/3

becomes y= {% x+# (or) a'Bx+ b3y + 23 p23 =,
b

6. Problem : Prove that the area of the triangle formed by the tangents at (x|, y,),(x,, y,) and

1
(x5, ¥3) 10 the parabola y* = 4ax (a > 0) is 16_a| (Vi =) (3= ¥3) (3= )] 8q. units.
Solution : Let D(x,, y,) = (atf, 2at,), E(x,,y,) = (at3, 2at,) and F(x;, y;) = (at3, 2at;)
be three points on the parabola y? = 4ax (a> 0).

The equation of the tangents at D, E and F are, respectively

tlyzx-iratl2 .. (1)
tzy=x+a122 ..(2)
t3y=x+at32 ..(3)

(D-Q)= (t,—tyy=a(t,—t,) (t, +t,) = y=al(t, + t,) substituting in (1) we getx = at,,.

. The point of intersection of the tangents at D and E is P(at 1, a(t, + t,)).

Similarly, the points of intersection of tangents at E, F and at F, D are Q(at,f;, a(t, + ;) and
R(atyt,, a(ty + 1)) respectively.

att, a(t +t,) 1

1
Area of APQR = Absolute value of 5 at,ty; a(t, +t;) 1
att; a(t,+t;) 1



2
= Absolute value of %

2
= Absolute value of %

2

Absolute value of "7 (t,-1) (t,—1) | 15

2

ity
15

Lt —1) (t,—1;) 0
t(t,—t) (t,—t) O

LS

L+t 1
t+t; 1
L+t 1

125

L+t 1
4 I 0
I 0
hty i+t 1

= % |ty = 15) (1 = 1)) (1) = 13)

1

1 .
B El(yl =) (= y3) (3 =y sq.units.

7. Problem : Prove that the two parabolas y* = 4ax andx*=4by intersect (other than the origin) at an

angle of Tan_l[

1/3,.1/3
3a’"b

2(a2/3 +b2/3)

} (see Fig. 3.25).

Solution : Without loss of generality we assume a > 0 and b > 0.

Let P(x, y) be the point of intersection of the parabolas other than the origin.

Then

Y =16a%x?
=1642(4by)
= 64a%by

. P -64a*h] =0

=  y -64a’b =0
= y=(64a’0)'? [.. y>0]
— 4,23p13
16 4/3b2/3
Also from y* =4ax, x= a4—
a

= 4q413p2/3

=~

= 40.1'

Fig. 3.25
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- P= (4a1/3b2/3 4a2/3b1/3)
Differentiating both sides of y?=4ax w.r.t. ‘x’, we get

& _ 2
dx y

2] -l
Cldx )y 4d® 0 2\b)

If m, be the slope of the tangent at P to ¥?=4ax, then

1a1/3
=2

a

1/3
Similarly, we get m, = Z[Z) where m, is the slope of the tangent at P to x2=4by.

If 0 is the acute angle between the tangents to the curves at P, then
343p13 }

tan O = | nm, —ny |_ 3a"3p"3

‘1 +mm, ‘ - 2(a*” +b™)

_ -1
so that 0 = Tan {m

8. Problem : Prove that the orthocenter of the triangle formed by any three tangents to a parabola lies
on the directrix of the parabola.

Solution : Let y* = 4ax be the parabola and A= (ar?, 2at,), B = (at3, 2at,), C = (at}, 2at;) be any three
points on it.

Now we consider the triangle PQR formed by the tangents to the parabola at A, B, C where
P =(at1,, a(t,*1,)), Q= (atyty, a(t,+t;)) and R = (atyt,, a(ty+))).
Equation of QR (i.e., the tangent at C) is
x—tyytaty =0.
Therefore, the attitude through P of triangle PQR is
Lyx+ty=at t,t;+a(t+1,) (1)
Similarly, the attitude through Q is
fxty=at t,t;+a(tyt 1) ..(2)
Solving (1) and (2), we get (#;— ¢, )x = a(t,— t;) i.e., x=—a.

Therefore, the orthocenter of the triangle PQR, with abscissa as —a, lies on the directrix of the

parabola.
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II. 1.

10.

III. 1.

Exercise 3(b)

. Find the equations of the tangent and normal to the parabola )2 = 6x at the positive end of the latus

rectum.

3
Find the equation of the tangent and normal to the parabolax? —4x— 8y + 12 =0 at [4, 5)

Find the value of kif the line 2y = 5x + kis a tangent to the parabola %= 6x.
Find the equation of the normal to the parabola y? = 4x which is parallel to y=2x+5=0.
Show that the line 2x —y+2 =0 is a tangent to the parabola y2 = 16x. Find the point of contact also.

Find the equation of tangent to the parabola)? = 16x inclined at an angle 60° with its axis and also find

the point of contact.

Find the equations of tangents to the parabola ) = 16x which are parallel and perpendicular respectively

tothe line 2x—y+ 5=0, also find the coordinates of their points of contact.

If [x + my+n=0is anormal to the parabola y* = 4ax, then show that al® + 2alm?+nm?>=0.
Show that the equation of common tangents to the circle x2+12 =242 and the parabola 32
=8axarey=+(x+2a).

Prove that tangents at the extremities of a focal chord of a parabola intersect at right angles on the
directrix.

Find the condition for the line y=mx + ¢ to be a tangent to the parabola x* =4ay.

Three normals are drawn from (k, 0) to the parabola y* = 8x one of the normal is the axis and the

remaining two normals are perpendicular to each other, then find the value of &.

Show that the locus of point of intersection of perpendicular tangents to the parabola = 4ax

is the directrix x + a = 0.

Two parabolas have the same vertex and equal length of latus rectum such that their axes are at

right angle. Prove that the common tangents touch each at the end of latus rectum.

Show that the foot of the perpendicular from focus to the tangent of the parabola y?=4ax lies

on the tangent at vertex.

Show that the tangent at one extremity of a focal chord of a parabola is parallel to the normal at

the other extremity.

The normal ata point 7, on y?=4ax meets the parabola again in the point t,. Then
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prove that 7,1, + 12 +2=0.

2. Fromanexternal point P tangents are drawn to the parabola y? =4ax and these tangents make angles
0,,0, withits axis, such that cot 0, +cot 0, isa constant ‘a@”’. Then show
thatall such P lie onahorizontal line.

3. Showthatthe common tangents to the circle 2x2+2)%=a?and the parabola y2=4ax intersect at the
focus of the parabola y?=—4ax.

4. The sum of'the ordinates of two points on y? =4ax is equal to the sum of the ordinates of two other
points on the same curve. Show that the chord joining the first two points is parallel to the chord

joining the other two points.

5. Ifanormal chord apoint ‘¢’ on the parabola y? =4ax subtends aright angle at vertex, then prove that

t=+.2.

I o o =
Icey—-Coneepts \

[ )

Equation in standard form y?=4ax, (a>0). Focus (a, 0), equation of directrix

In aparabola eccentricity e= 1

x+a=0, axis y=0, and length of latus rectum ‘4a’.

Its equation when its axis is parallel to the x-axis isx=/?+my-+nand when axis is parallel to the y-

axis is y = Ix% + mx +n.
Focal distance of a point P(x, y,) on the parabola y2=4ax,(a>0)is X, *a.

Parametric equations x=ar?, y=2at.

P(x,,y,) lies outside, on, or inside the parabola S = y* — 44x = 0 accordingas S, _<2 0.

y=mx+c,(m=0)isatangent to the parabola y2 =4ax when ¢ = ﬁ‘
m

y= mx+£, (m#0) is always a tangent to the parabola y* = 4ax at [%,2—61) .
m m m

A horizontal line cannot be a tangent to the parabola y* =4ax.
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< Equation of the tangent at the point (x,,y,) on the parabolaS=01s S, =0.
< Equation ofthe normal at the point (x,,y,) on the parabolaS=01is (y=y)= _2—21 (x—x)).

% Equation of the tangent at a point ‘¢’ on the parabolay?=4axisx -yt +at>*=0.

% Equation of the normal ata point ‘¢’ on the parabola y? = 4axis y+xt=2at + ar.

~ HistorieHDote ~

Menaechmus, (380 - 320 BC) an gssociate of Plato and f pupil of Eudoxus, invented the conic

sections.

The conic sections were named and studied as long ago as when Apollonius of “Perga” undertook
a systematic study of their properties. The names for the conic sections : ellipse, parabola and
hyperbola were given by Apollonius. Book I of Apollonius treatise on conic sections deals with
properties of asymptotes and conjugate hyperbolas. Kepler was the first to notice that planetary
orbits were ellipses. Galileo (1564 - 1642) proved that the path of a projectile is a parabola.
Newton was then able to derive the shape of orbits mathematically using calculus under the assumption

that the gravitational force goes as the inverse square of distance.

Answers >:

Exercise 3(a)

I. 1. Vertex (—%%), Focus (—%%)

2. Vertex (3,—%), Focus (3, 1)

3. Equation of the axis is y + 3 = 0, equation of the directrix is 2x + 5 = 0.
4. axis2x+3 =0, directrix 20y —-33=0

5. (x—1)2==20(y+2)

6. x*—2xy+y*—12x-20y+68=0

7. 2y—3)?=(4x+13) or 2y—-3)?=—(dx+11)
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8. (i)ontheparabola (ii) outside the parabola (iii) inside the parabola.

9. (8,+8) 10. (8,-8) 12. 107 k.m.
II. 1. 9?=4dax

2. V*=4(a'- a)(x—a)

3. x+2y=0, x—2y=0, n-Tan"'(4/3)

4. 52+2x-21y+20=0

5. x*—4x-2y+10=0

L. 1. 9x2—12xy+4)%+68x—54y+ 153 =0, length of the latus rectum = 7% Equation of the axis of

the parabolais3x—2y+12=0.
3. (i) Vertex (%,—2),F0cus (%,—2),Directrix4x— 11=0,axisy+2=0
(i1) Vertex (1,1), Focus(1,0), Directrix y=2, axisx=1

Exercise 3(b)

I. 1. Tangent2x—2y+3=0, Normal2x+2y—-9=0
2. Tangent x—2y—1=0, Normal4x+2y—19=0
LS
S s
4. 2x-y-12 =0

5. (1,4)

6. 3x—\/§y+4=0 (%’%j
II. 1. 2x—y+2=0, point of contact (1, 4)
x+2y+16=0, point of contact (16, —16)
5. am*+c=0

6. k=6



Chapter 4

3€

“trinaabhi cakramajara manarvam yeenee maa visva

bhuvanaani tasthuh”

“The elliptical path through which all the celestial bodies

move, is imperishable and unslackened”

-Rigveda

Introduction

We study the ellipse in this chapter. We also discuss, about

the standard form of equation of ellipse, conditions fora line to be

atangentto the ellipse, chord of contact, parameteric equations of T NS
anellipse, in the chapter. Girard Desargues
(ca.1593-1662)
4.1 Equation of ellipse in standard form, Desargues, a French mathematician
parametric equations who gave remarkably original writings

on the conic sections. He was besides

being a mathematician, an engineer,

an architect and one time French army

standard form and also its parameteric equations. officer. In geometry his contributions
have been phenomenal; fundamental
theorems on involution, harmonic
ranges, homology, poles and polars
and principles of per-spectivity in
projective geometry are some of his
works. The fundamental two triangle
theorem bears his name.

In this section, we study the equation of an ellipse in the
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4.1.1 Definition (Ellipse)

A conic with eccentricity less than unity is called an ellipse. Hence an ellipse is the locus of a
point whose distances from a fixed point and a fixed straight line are in constant ratio ‘e 'which is
less than unity. The fixed point and the fixed straight line are called the focus and the directrix of
the ellipse respectively.

4.1.2 Equation of ellipse in standard form

Let S be a focus, the line / be the corresponding directrix and e be the eccentricity. Let Z be the foot of
the perpendicular from S on the directrix. Let A and A” bethe points which divide SZ intheratioe: 1, internally
and externally, respectively, (Fig.4.1).

MY

X< C X

77 A’ §/ CyA Z

24

Fig. 4.1

Consider C, mid point of AA” as origin, consider the line CZ extended as X-axis and a line perpendicular toitat
CasY-axis.

Let CA=a =CA’sothat A=(a,0)and A"=(-a,0).

But SA _ e= SIIA‘ = SA = ¢(AZ) and SA” = ¢(A’Z)
AZ A'Z
CA-CS=¢(CZ-CA) = a —-CS=¢(CZ —a) (1)
CS+CA'=¢(CA"+CZ) = CS+a =e(a+CZ) ..(2)

a
Adding (1) and (2) above, we get 2a=2¢(CZ) or (CZ) = e
a
. Equation ofthe directrix is x= z . ..(3)

Subtracting (1) from (2), we get 2(CS)=2ea = CS=ae.

. Coordinates of focus S are (ae, 0).



Now let P(x, y) be a point on the ellipse and PM be the perpendicular distance from P to the directrix.
Then by the definition SP=e(PM).
(SP)? =e? (PM)?

2
2 a
ie,  (x—aef+y? = ez(f +a—z‘ﬂ] [ PM = x‘_}
e e e
1e., x¥2(1-e2)+)? = a*(1-¢€?)
2 y?

+—=
a’® a*(-é%)
Since 0<e<1=1-€2>0 = a*(1-¢?)>0.

We can choose areal number 5> 0 such that a(1 —e?) = b

2 2
X
¥+z—2 =1, (a>0, b>0) .(4)
we have shown that coordinates of P must satisfy (4) if P satisfies the geometric condition SP = e¢(PM)
conversely, ifx, y satisfy the algebraic equation (4) with 5>=a*(1—¢?)and 0<e<1, then

2 2.2 2 2y 2 2
y2:b2(1—x—2)=b2(a —-X ]: a(l-e )2(61 -x°) =(1—ez)(a2—x2).
a

2
a a

SP = \/(x—ae)2 + y2 = \/x2 +a’e’ —2aex+(1-¢%) (a* - x*)

SP = \/(xe)2 —-2(xe)a+a’ =|xe—a|= e|x—£| = e(PM).
e

IfP satisfies the algebraic condition then P satisfies the geometric condition and vice versa.
2 2
. X . . .
Thusthelocusof Pis —+ z—z =1, theequation of ellipse in the standard form.
a

Now let §”be the image of S and Z'M” be the image of ZM with respect to Y-axis, taking S’ as focus and
2 2

Z'M’ as corresponding directrix, it can be seen that the corresponding equation of ellipse is also — + 1=l =1.
a
Hence for every ellipse, there are two foci and two corresponding directrices.
we have b2=a*(1 —e?)and0<e<1 = b*<a?> = b<a.

4.1.3 Nature of the curve
2 2

Equation of'the ellipse in standard form is x_2 + % =1,(a>b>0) .. (D)
a
(1)  Pointofintersection with coordinate axes:
If y=0, then x=+1a i.e., the curve intersect X-axis at A(a,0)and A’ (—a, 0).
hence AA” =2a.
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If x=0, then y=+b i.e., the curve intersect Y-axis at B(0, ») and B’ (0,—b).
hence BB” =2b.

(i) From(1)wehave y = iB\/a2 —x* and x= i%w/bz -y .. (2)
a
From (2),yisreal & a*-x*>0 & —a<x<a & |x|<a
From (2),xisreal & b*—)*>0 @ -b<y<b o |y|<b.
.. Corresponding to every real value of x, with | x| <a, there are tworeal values of’y, equal inmagnitude
butopposite in sign. Similarly correspondingto everyreal value of y with |y |<b, thereare tworeal values
ofx, equal inmagnitude but opposite in sign. Hence ellipse is symmetric about both the axes.
@) Thecurve lies inside therectangle bounded by
the lines 1Y
x=a,x=-a,y=b,y=-b(seeFig.4.2)
B =b
y
X/ p3 N g] C' g A >X
=
B’ 4
X=-a xX=a
2¢
22 Fig.4.2
(iv) Thetrace ofthecurve ? + z—z =1 Ay
infirst quadrant is shown in BI(©0.5)
Fig.4.2(a).
ig.4.2(a) X< A
JrY'
Fig.4.2(a)

Since the curve is symmetric about both axes,
the complete trace of the curve is shown in

Fig.4.3. /_
N

A/

Fig. 4.3
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(v) Any chord through C(0, 0) of the ellipse is bisected at the point C, for the points (x, y), (=x, —))
simultaneously lie onthe curve. The centre ofan ellipse is defined as the point of intersection of its axes of

symmetry. Therefore the centre of the ellipse is the point C.

4.1.4 Definition (Major and Minor axes)

The line segment AA” and BB’ of lengths 2a and 2b respectively are called axes of ellipse.
If a> b, AA’ is called major axis and BB’ is called minor axis and vice versa if a < b. The

extremities of the major axis of the ellipse are called the vertices of that ellipse.

4.1.5 Various forms of the ellipse

2 2

X
Ifa=b, thentheellipse — + z—z =1 isacircle (x*>+)? =a?) with centre at origin and having radius ‘a’
a

and we are familiar with circles. Weassumeda # b and inthe following discussion, we describe different forms

oftheellipse.
. x2 y2 .
() =+=5=1(a>b>0) (Fig.44)
a b
Major axis along X-axis
Length of major 2a
axis(AA")
Minor axis along Y-axis
Length of minor
axis(BB") 2b
Centre C=(0,0)
Foci S =(ae, 0),
S’ =(~ae, 0)
Equation of x=ale
the directrices x=-—ale
o a2 _ b2
Eccentricity e= 5
a

Directrix

-l

Directrix

>X

S

Z/

A/

s C

Fig. 4.4
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2 2
(i) x_2+Z_2 —1(0<a<b) (Fig.4.5)
a

Major axis along Y-axis

Length of major 2b

axis(BB")

Minoraxis along X-axis

Length of minor

axis(AA”) 2a

Centre C=(0,0)

Foci S =(0, be)
S =(0,-be)

Equation ofthe y=ble

directrices y=-ble

b*—a’
Eccentricity e= 2

4.1.6 Centre not at the origin

Mathematics - IIB

Y
€ Z Directrix
B
¢S
> X

A

VY’

Fig.4.5

> Directrix

Ifthe centre is at (4, k) and the axes of the ellipse are parallel to the X-and Y - axis, then by shifting the

originto (A, k) by translation of axes and using the results (i) and (ii) above, the following results (iii) and (iv) can

be obtained.
-h)’ -k)’
(iii) (x : ) + 8l = ) =L (a>b>0) (Fig.4.6)
a
Major axis alongy=k
Length of major 2a
axis(AA")
Minor axis alongx =h
Length of minor
axis (BB") 2b
Centre C=(hk)
Foci S=(h+ae, k)
S'= (h—ae, k)
Equation of x=h+ale
the directrices x=h-ale
N JERY
Eccentricity e= 2
a

Fig. 4.6

Directrix Minor axis Directrix
y /F
B
A’ - C(h,k) A axis(y=k)
(major)
B ’
4
\
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\Major axis
< B Directrix
P S
< N x >Minor axis
< 7 Directrix
y
Fig. 4.7

(i) & ;j’)z e ;2k)2 =1, (0<a<b), (Fig.4.7)
Major axis alongx=h
Length ofthe major 2b
axis(BB")
Minor axis alongy =k
Length ofthe minor
axis (AA") 2a
Centre C=(h,k)
Foci S=(h,k+ be)
S'=(h, k—be)
Equation of y=k+ble
the directrices y=k-ble
b’ —a’
Eccentricity e= 22
4.1.7 Definitions (Chord, Focal chord, Latus rectum)

Chord : 4 line segment joining two points on the ellipse is called a ‘chord’ of the ellipse.
Focal chord : A chordpassing through one of the foci is called a ‘Focal chord’.

Latus rectum : A focal chord perpendicular to the major axis of the ellipse is called a
‘Latus rectum’. An ellipse has two Latera Recta.

4.1.8 Length of the latus rectum

LetL,L’” bethe ends of the latus rectum passing
through the one of the foci S(ae, 0) of the ellipse

(Fig.4.8)

2 2
XY

—+==1 (a>b
JERRE: (a>Db)

(D)
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Since LL’ is perpendicular to x-axis, the x coordinate of L and L” are equal to ‘ae’. This L= (ae,y,)is

on (1), wehave

2

@e)’ ¥ y b’
+—1=1=>b—12=(1—e2):>yf=192(1—.e2)=b2 . [eP=ad(1-e)]

a2 bz
B>
oy =t —
a
2 , b2
Hence L :(ae, b—] and L =(ae, ——],
a a
, 2
". Length ofthelatusrectum LL" = ——
a

4.1.9 Note

2
1. The coordinates ofthe four ends of the latera recta of the ellipse. x_2 + 1}9)_2 =1,(a>b)are
a

b? , b’ b2 2
L= [ae, _} L = (ae, __] and L, = (—ae, —J, L = (—ae, —b—J, (Fig.4.8).
a a a a

2 2 2 2
2. Lengthofthelatusrectumoftheellipse x_2 + 1)9)_2 =1, (b>a) is % and the coordinates of the four ends
a

2 2 2 2
ofthe laterarectaare L a—,be , L 4 ,be |and L, | —, —be L —a—, —be |.
b b b’ b
2

3. (1) Theequationofthelatusrectumofthe elhpse —+ l)))_2 =1, (a > b)through S isx=aeandthrough S’

ISx=-—aqe.

2
(i) Theequation ofthe latus rectum ofthe elhpse —+ Z_Z =1,(b > a) through Sisy=be and through
a’

S’ isy=—be.
x2 y2
4.1.10 Theorem : If P(x,y) is anypoint onthe ellipse — + e 1, (a>b). whose fociare Sand S’ then
a
SP+ S’Pisaconstant.

2
Proof : The equation of the ellipse is given as x_2 + Z—Z =1,(a>Db). (D)
a

Let S, S be the foci and ZM, Z'M’ be the corresponding directrices. Join SPand S’P. Draw PL
perpendicular to x-axis and M"MP perpendicular to the two directrices (Fig. 4.9).



By the definition of the ellipse SP=ePM =¢(LZ).
a
SP =¢(CZ-CL) = e(;—x] NG N
SP =a—xe
S'P = ¢PM'=e(LZ)) M Pcy) s
— «CL+CZ) / o
{ a j NN S C| s L A >X
e
= a+txe L L
o SP+ S P=g-xe+a+xe.
. SP+ S"P=2a(constant)=Length of ’ v *
the major axis. Fig. 4.9

4.1.11 Note (Constructing an ellipse)

There are several methods of constructing an
ellipse. One of these uses the fact that SP+ S'P= 24 P
(Constant) directly. The two ends of string of length
2a are held fixed at the foci S and S"and a pencil
draws the curve asitis held tight against the string
(Fig.4.10).

Fig.4.10

Hence, an ellipse is the locus of a point the sum of whose distances from two fixed points is a constant &,

provided the distance between the fixed points is less than £.

4.1.12 Definition (Auxiliary circles)

Y

The circle described on the major axis of an ellipse as
diameter is called ‘auxiliary circle of the ellipse.

The equation of the ‘auxiliary circle’ of the ellipse X’

A/
x2 y2
P
(seeFig.4.10(a)).

=1(a >b) isx?+y*=a>.

diN
\J/

Fig.4.10(a)

YY’

4.1.13 Eccentric angle and parametric equation

Let P be any pointonthe ellipse. Draw PN perpendicular to the major axis and produce it to meet the
auxiliary circle at Q. Then angle ACQ is called the ‘eccentric angle’ ofthe point P. Let us denote the angle as 0.
If Pstarts from A and moves along the ellipse in the anti-clock wise direction and comes once again atA, then
O will vary from O to 27.



Mathematics - IIB

Letthe coordinates of P be(x, y). Thenx=a cos 6. AY
X
[-+ from ACNQ,cos0= ” where CQ istheradius ofthe auxiliary
circle(Fig.4.11)] B
2 2 P
Since Pliesontheellipse — +=5 =1, 5
a” b X’ >
2 .2 2 A’ C N JA X
a“cos"@ vy
wehave ———+-5 =1
a b B
= y? =b*(1-cos’ 0) = b*sin> O
= y = tbsin6. vY’
Fig. 4.11

.. The coordinates of P are ofthe form (acos 0, bsin0)or (acos o, b sin o) where a.=27—0. The point
(acos 8, bsin 0) s for the sake of brevity, called the point 6 and is denoted by P(0).

Ifwe putx=acos 6, y=>5sin 0 inthe equation of the ellipse, the equation is satisfied for all values of ©.
2 2

X

Hence the pair of equations x=a cos 0, y=b sin 0 together yield the single equation — + l)))_z =1. Thesetwo
a

equations are known as the parametric equations of the ellipse and O is called the parameter.

4.1.14 Notation

2 2
We denote x_2 + z—z —1 by S throughout this chapter. Thus the equation of the ellipse in standard form s
a

S=0. Further, we use the following notation similar to the notation given in the chapter on circle.

2 2
A _5% Ny MY
S, =a_21+b_21_ . S =;_22+1—22_1’ Su =a_12+b_12_ :
4.1.15 Ellipse and a point in the plane of the ellipse
Anellipse divides the X Y-plane into two disjoint regions, one containing the foci, called the interior region

ofthe ellipse and the other is called the exterior region of the ellipse.

2 2
Let P(x,,y,) be apointin the plane of the ellipse x_2+l))z_2 =1 |x/<a. ..(1)
a

Draw PN, perpendicular to the major axis of the ellipse (1), which

meets the ellipse in Q. Then N(x,, 0) B I(;(xph)
b / \’\
Q=[5 2] | X< - .x
a &
N

b
(xl, . \/‘12 —Xf) and PN=|y, |




b2
2 b o
PN -(@N)? _ T @) e e | L@
b2 b2 a2 b2

consider

Now
(1) Pliesoutsidetheellipse & PN>QN o (PN)2-(QN)?>0

2 2

_(PN) —2(QN) >0
b

(i) Pliesontheellipse < PN=0QN & (PN)2-(QN)?2=0

(PN)* = (QN)* _
2

s Sy

& S = b 0
(iii) P lies inside the ellipse & PN<QN < (PN)2<(QN)?
2 2
o S, = (PN)”"—(QN)” _ 0.

2
b
2 2

X
If|x,|> a, thenthe point P(x,,y, ) clearly lies outside the ellipse and —12 + Z—lz —1> 0 inthis case also.
a

Thus the point P lies outside, on or inside the ellipse S = 0 according as S, is positive, zero or negative
ie, S;; 2 0.
4.1.16 Solved Problems
1. Problem : Findthe eccentricity, coordinates of foci, Length of latus rectum and equations of directrices
of the following ellipses.
(i) 9x2+16)? —36x+32y—92=0
(i) 3x2+1y*—6x—2y—5=0
Solutions
(i) givenellipse  9x?+ 16y%> —36x+32y—92 = 0
92 —4x+4)+ 1602 +2y+1) = 92+36+16
9(x—2)?+16(y+1)> =144
(x=2 (=D _
16 9
(x=h)? (=K’
a’ ¥ b’

?=16,02=9,(hk)=2,-1) =>a=4,b=3 = a>b.

L l-p*  [16=9 7
a a’ 16 4

1,

comparing with =1, weget
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47

Foci=(h+ae, k) = (2+— -1.

Fociare (2++/7, —1).
20> _2(9) _ 9

Lengthoflatusrectum = —=——=—.
a 4 2

a 4x4
Equations of directrices x = h+ " =24 7 -

Le., Equations of directrices are /7 x = (2\/_ 7 £16).
(i1) Givenellipse 3x2+3?—6x-2y-5=0
3(x2-2x+ 1)+ (2 -2p+1)=5+3+1
3(x—12+@-12=9
(x—31)2 +(y;1>2 1

(x=h)°  (y=k)
a’ b*
=3, b*’=9, (hk=(1,1) =>a=.3; b=3=b>a

S

Foci = (h, k+ be)=(1’ 1 i3-%] = (1,1£/6)

comparing with =1, weget

2a> 233
Length ofthe latus rectum = % = % =2,
Equations of directrices y =k + b =1+ ﬂ
e A2

e, 2y=@2133).

2. Problem : Findthe equation of the ellipse referred to its major and minor axes as the coordinate axes

X, Y-respectively with latus rectum of length 4 and distance between foci 4./ .

2 2
Solution : Let the equation of the ellipse x_2 + y_2 =1 (a>b).
a” b

2

2b
Length of the latus rectum = —=4=> b’ =2a.
a

Distance between foci S =(ae, 0) S'=(~ae, 0)is2ae= 42 = ae=2 V2.
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Now  b?=a*(1-¢e2) = 2a=a*—(ae)*=a*>-8 = a*—2a—-8=0.
(or) (a=4)(a+2)=0=a=4, (- a>0).
b*>=2a=38

2 2
. Equation of the ellipse f—6 + y? =1 (or) x*+2)?=16.

3. Problem : Ifthe length of the latus rectum is equal to half of its minor axis of an ellipse in the standard

form, then find the eccentricity of the ellipse.

2 2
Solution : Let x_2 + y_2 =1 (a>b)betheellipsein its standard form.

1
Given that the length of the latus rectum= 5 (minor axis)

2
&:l(Zb):%:a
a 2

4b% =a? = 4a* (1 - e?) =a?

, 1, 3 V3

= Z = e = Z = e= 7
4. Problem: [f0,, 0,arethe eccentric angles of the extremeties of afocal chord (other than the vertices)

1-e

2 2
of the ellipse x_2 + Z_z =1, (a> b) and e its eccentricity. Then show that
a

(i) e cos 6, +98,) -12-92) = cos ©,-6,) ;62).

e+l 0 0
ii) —— = cot| = | cot| == |.
@ 5= 3 Jou( 3 p

Solution : (i) Let P(0,), Q(6,) be two extremeties ofa focal chord of the ellipse
P

2 2
Xy
X+ =1, (a>b). < X
Q
\

P=(acos0,,bsin0,), (6, = 0)

Q=(acosb,, bsinb,), (6, = m)

and focus S=(ae,0). But PQ is focal chord Fig. 4.13

henceP, S, Qare collinear, (Fig. 4.13)
.. Slope of PS = Slope of S—Q

bsin®  bsin0,
a(cos0,—e) a(cosB,—e)
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sme1 cose2 —esin 61 =Cos 61 sin 62 —esin 62

sinB, cosB, — cos B, sin6,=e(sin6,— sin6,)

= sin(0,—6,)=e(sin6,— sin0,)

. 2sin (M) Cos (MJ = Zecos(el-'_ez)sin(el _92)
2 2 2 2

(ii)

2 2
5. Problem : Cis the centre, AA" and BB’ are major and minor axes of the ellipse % + Z—z =1. If(PN)

(PN)*  _ (BO)’

is the ordinate of a point P on the ellipse then show that — = >
(A'N) (AN)  (CA)

Solution : Let P(8)=(acos 6, b sin 0) be apoint on the ellipse
) 4

2
X+ 2 =1 (Fig.4.14)

S
2 b

a
.. PN =bsin0, CN=acos0,CA=CA’=a, CB=CB’ =5.

-
LH.S.= PN _ (PN)° a A’!)A 8
(A'N) (AN) (CA’+CN) (CA-CN)
(b sin 0) _ b* sin” 0 b

(a +acosB) (a—acos 0) - a*(1 + cos0) (1-cos 0) Y’

b* sin* 0 b*sin®® b (BC) _

= == =R.H.S. .
a’* 1-cos’0) a*sin*0® a*> (CA)? Fig.4.14




6. Problem : S and T are the fociof an ellipse and B is one end of the minor axis. If STB is an equilateral

triangle, then find the eccentricity of the ellipse.

2 2
Solution : Let x_2 + y_2 =1 (a> b)beanellipse whose foci are S and T, B is an end of the minor axis such that
a

STB isequilateral triangle, then SB=ST=TB. Wehave S(ae, 0), T=(-ae, 0)

and B(0, b). Consider SB=ST = (SB)?>=(ST)? = (ae)* + b>=4a*e? B(0,5)
@ rai(-ed) =dat? [ bB=ad(1-ed)] N
(_ae, 0)/ N (ae, O)
2 _ 1 Z I AN
“ =7 T I S
| I
.. Eccentricity of the ellipseis = .

2
Fig. 4.15

2 2
X

7. Problem : Show that among the points on the ellipse — + l)))_z =1 (a>b), (—a, 0) is the farthest point
a

and (a, 0) is the nearest point from the focus (ae, 0).
Solution : Let P=(x, y) be any point on the ellipse so that—a <x <a and S =(ae, 0) be the focus.

Since (x,y) isontheellipse,

b2
Y == -x)
a

= (1-¢€?) (a*-x?) [+ B2=a*(1-e?)] (1)
Then we know that
SP2 = (x—ae)*+)?
= (x—ae)*+(1-¢e?) (a*—x?) [from(1)]
= —2xae+ a*+ e*x?
= [a—ex]?
SP = |a—ex]|

wehave —a<x<a

= —ae<xe<ae
= —age—a<xe—a<ae—a ..(2)
ex—a<0

oo SP = a-ex ...(3)
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From (2)and (3)
ae+a> SP>a—ae
= a—ae< SP<ae+a
. Max SP=ae+awhen P=(-a,0)
and Min SP= a—ae when P=(a,0)
Hence the nearest pointis ( a, 0),

and the farthest one is (—a, 0).

1
8. Problem : The orbit of the Earth is an ellipse with eccentricity 0 with the Sun at one of its foci, the

major axis being approximately 186 x 10 miles in length. Find the shortest and longest distance of the

Earth from the Sun.
2 2

Solution : We take the orbit of the Earth to be x_2 + Z—z =1(a>b).
a

Sincethe majoraxisis 186 x 1 0°miles,
2a = 186 x10°miles
a= 93 x10°miles.
1
If e be the eccentricity ofthe orbit, € = % .

We know, the longest and shortest distances of the Earth from the Sun are respectively a + ae and
a— ae(problem 7)

1 .
Here, the longest distance = 93X 10° X(l + 5)“111@5

9455 x 104 miles.

1 .
and the shortest distance — 93x10°x (1 ~ 0 ) miles

= 9145 x10* miles.

Exercise 4(a)

I. 1. Find the equation of'the ellipse with focus at (1, 1), e=2/3 and directrixas x+y+2=0.

2. Find the equation of the ellipse in the standard form whose distance between foci is 2 and the length
of latus rectum is 15/2.

3. Find the equation of the ellipse in the standard form such that distance between foci is 8 and
distance between directrices is 32.
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Find the eccentricity of the ellipse (in standard form), if its length of the latus rectum is equal to half
of'its major axis.

The distance of a point on the ellipse x* + 3)? = 6 from its centre is equal to 2. Find the eccentric

angles.
Find the equation of ellipse in the standard form, if it passes through the points (=2, 2) and (3,-1).

Ifthe ends of major axis of an ellipse are (5, 0) and (-5, 0). Find the equation of the ellipse in the
standard form if its focus lies on the line 3x — 5y -9 =0.

. Ifthe length of the major axis of an ellipse is three times the length of its minor axis then find the

eccentricity of the ellipse.

Find the length of major axis, minor axis, latus rectum, eccentricity, coordinates of centre, foci and

the equations of directrices of the following ellipse.

(i) 9x% + 16y = 144 (i) x> +)? = 8x+2y+1=0
(iii) x2+2)2 —4x+12y+14=0
. . - (x=h)° =k _ _
Find the equation of the ellipse in the form —+ R 1, given the following data.
a

(i) centre (2,-1), one end of the major axis (2,-5), e = %

(i1) centre (4,—1), one end of the major axis (—1, —1) and passes through (8, 0)
(ii1) centre (0,—3), e=2/3, semi minor axis 5

(iv) centre (2,-1), e=1/2, length of latus rectum 4

Find the radius of the circle passing through the foci of an ellipse 9x* + 16)? = 144 and having least
radius.

A man running on a race course notices that the sum of'the distances of the two flag posts from him
is always 10 m. and the distance between the flag posts is 8 m. Find the equation of the race course
traced by the man.

A line of fixed length (a + b) moves so that its ends are always on two fixed perpendicular straight
lines. Prove that a marked point on the line, which divides this line into portions of length ‘a’ and ‘b’
describes an ellipse and also find the eccentricity of the ellipse whena =8, b=12.

2 2
Prove that the equation of the chord joining the points ‘o’ and ‘B’ on the ellipse x_2 +2

—2=1is
fcos a+p +lsin OC—+B =cCos a—_B
a 2 b 2 2




| Mathematics - IIB

4.2 Equation of tangent and normal at a point on the ellipse

Inthis section, the relation between an ellipse and a straight line in its plane is discussed. The condition for
astraight lineto be atangenttoa given ellipse is obtained. The cartesian and parametric equations of the tangent
and the normal ata given point on the ellipse are also derived.

4.2.1 Points of intersection of the ellipse and a straight line

2 2
Let x_2 + y_2 =1 betheellipse and the line y=mx + ¢ be given. The x coordinates ofthe
a

point ofintersection of given ellipse and line are given by the quadratic equation in x obtained by eliminating y.

i x2 (mx+c)? B
1.€., a—2 + b—2 =
1e., xX(@?m? + b2) + 242 mex + a*(c - b?) =0 (1)
This quadratic equation in x, has tworoots (say x, and x,) distinctreal (Fig.4.16(i)), coinciding
(Fig.4.16(i1)) orimaginary (Fig. 4.16(iii)) according as the discriminant of equation (1) is positive, zero (or)
negativerespectively. The ordinates of the points of intersection, y,,y, canbe obtained by substituting x , x, for

x in y=mx+ec.

B
(1) (ii) (i)
Fig.4.16
Note that any straight line that intersects the ellipse at only one point (touches) is tangent to
theellipse.
4.2.2 Theorem : The condition for a straight line y = mx + c to be a tangent to the ellipse

1

2 2
x_2+y_2:1 is c2 = a’m?+ b,
a b
Proof: The x coordinates of the points of intersection of the line y=mx + c and the ellipse are given
by (eq(1)of4.2.1)
(@*m?* + b?) x* + 2a*cmx + a? (¢* — b*) =0 (1)
The line will touch the ellipse iffthe two points are coincident.

& discriminent of (1)is zero.



& dat Pm? —Aa*m? + b)) a? (P - b)) =0

o A=d*m?+ b o ¢ =+\atm® + b2,

AY
4.2.3 Note
(1) Inview of the Theorem4.2.2, the equation of any tangent
totheellipse S=0canbetakenas y = px + m . X' \ > %
(i) Foreveryreal value of m, there are two parallel tangents to \\C
theellipse as showninFig.4.17.
(1) Thepoints of contact ofthese tangents are by
—a’m b* 3 —a’m b*
Ja2m? + 12 S +b2j —( - ,7] and Fig. 4.17
a’m -b* a’m -b’
\/azm2 +b2 \/azm2 +b° j ) (T T] where ¢?=a? m? + b2,

4.2.4 Theorem : The equation of the chord joining two points (x,,y,) and (x,, y,) on the ellipse S =0 is

S1+5,=S),

Proof: Let P( )and Q(. )bet ints on the elli S=X2 y 1=0 then S,,=0andS,,=0
: Let P(x,,y,) and Q(x,, y,) be two points on the ellipse z+?— =0 then S, =0andS,,=0.

Consider the first degree equation S, +S, =S, whichrepresents a straight line.

Substituting (x,,y,) itbecomes S, +5,,=S,, = 0+S5,=5,,.

Y
-~ (x}, ;) satisfies the equation S; +S,=S . ‘\'\
Similarly (x,,y,) also satisfies the equation S, +S,=S,,.
.. Equation of the chord PQ willbe S, +S,=S . / Peey)

4.2.5 Theorem : The equation of the tangent at P(x,, y,) o X< \\C/ \'X
the ellipse S=01is §;=0.

Proof: Let P(x, y,) and Q(x, y,) be two points on S = 0 then
S;;=0andS,,=0. 'Y’
Fig. 4.18

By Theorem 4.2.4 the equation of the chord PQ is
S, +S,=S,,. (1)

Chord PQ becomes the tangent at P when Q approaches to P thatis (Q(x,,y,) approachesto P(x,,y,))
(Fig.4.18)
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Therefore the equation of the tangent at P obtained by taking limits as (x,,,) tendsto (x, y,) oneither
sideof (1) (Fig.4.18)

Sothe equation of tangentat P givenby [ (S, +S,)= Lt S,
0—>P 0—>P

Le., S, +S, =8, [+ S;— S;andS,, = S, as(x,»,) = (x; )]
ie., 2S5, =0
1e., S, =0.

2
4.2.6 Theorem : The equation of the normal at P(x,, y,) to the ellipse SEé+%—1=O is
a

2 2
ax by 2 (x 20, v 20),
X N
Proof: By the Theorem4.2.5, the equation of thetangent totheellipse S=0atP(x, ) )is §| = =L + ==L Y 1-1=0.
- ch P -x/a’ _—bzx1
.. Slope of the tangentat P = = .
P 8 N /b? az)ﬁ
2
a
... Slope ofthenormal at P = Dx
X

2
Hence the equation of the normal at P(x, y,) is (y —y,)= % (x—x).
X
a2x 2y
Simplifying this, we get — ——= = a* —b*.
N
4.2.7 Note

() Ifx,=0and y, # 0 then thenormal at P(x, y,)=(0,y,) =(0,%b)isthe Y - axis.
(i) Ify,=0 and x, # 0then the normal at P(xl,yl) =(x;,0)=(+£a, 0) is the X-axis.

y? xcose_l_ysmﬂ

(i) Equationofthetangentat P(6)onthe elhpse — + e =11is , =1.
a’ a
We know that the equation of the tangent at P(x, y,) to the ellipse S=01s
S, = —21 )l;yl —1=0. Replacing (x,,y,) by P(8) =(a cos 6, b sin 6), we get
a
xcosG_I_ ysin© _1
a b
ax b
(iv)  Equation ofthe normal at P(0) to the ellipse S=01s - Y —g?-p? when 0 0, E, T, 3n .
cosO sinH 2 2



The equation of the normal at P(x,, y,) to the ellipse S=0.

2 2
ax_by =a’-b* (x, 20,y, #0). Replacing (x,¥;) by P(0)=(acos 6, bsin0)
X N
weget X DY _ 2 2920 F 130,
cos® sin0O 2 2

(v)  When0=0or m, the equation of the normal is y=0.

When 6= g or 3?7[ , the equation of the normal is x=0.

4.2.8 Theorem : At most four normals can be drawn from a given point to an ellipse.

ax b
Proof : Equation of the normal at the point P(0) on the ellipse S=0is . Y —a?-p? . Ifthis passes
cosO sin0O
through the point (x,y,) then ay by _ a>-b? .. (1)
cosO sin0O

The equation will give different values of © for which the normal passes through (x,, ).

1+tan29 1+tan29
Equation (1) canbe writtenas ax,| ———=% |- by, — 2 |=g>-b” After simplification we
1—tan® 5 2tan 5

get by, tan* %+ 2(ax, +a’e”) tan’ %+ 2(ax, —a’e®) tang —by, =0.

. . 0. . 0 :
Thisequation in tan 5 is satisfied by atmost four values of tan 5 If we consider one of these values as

o, tang =0, =2 Tan"'(o,) and the general value of § = 2nm+2 Tan'(a,), (nisan integer) which

gives the same point on the ellipse as 0.

.. Corresponding to one value of tang , we get one point on the ellipse.

Hence there will be at most four normals to the ellipse passing through a point.
4.2.9 Solved Problems

1. Problem : Find the equation of tangent and normal to the ellipse 9x°> + 16y° = 144 at the end of the

latus rectum in the first quadrant.

Solution : Givenellipse 9x?+ 16y? =144,

2 2
ie., f—6+%—1 =0 (comparing with S=0; a?=16,b*=9)
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.o l-p*  [i6-9 7
a’ 16 4

2
and end of the latus rectum in the first quadrant is P(ae, b—] = (\/ 7, 2}
a

Wy
b2

1e. x(\ﬁ) +X (2) =1
’ 16 914

Le., ﬁx+4y =16

.. Equation ofthe tangent at P is

Equation ofnormal at P is —_— b
X Y
1e., 16—x—9_y=16_9
J79
4
i.e., 16—x - 4y =7

ie,  16x—47y="74/7.

2 2

2. Problem : [fa tangent to the ellipse x_2 + z—2 =1 (a > b) meets its major axis and minor axis at M and
a

2 2
N respectively then prove that a >+ b > =1 where Cis the centre of the ellipse.
(CM)” (CN)
42 2
Solution : Let P(0)=(a cos 6, b sin 0) be apoint on the ellipse pe + y_2 =1.
Then the equation of the tangent at P(0) is xcosH +2 s[1)n 0 =1
a N

. X y _
1.€., a +T_1

N
cosO  sind / P
ameets major axis (X-axis) and minor axis (Y-axis)at M and N X< =
respectively (Fig.4.19). \

4 oN= b

.. CM = , =—
cos0 sin O

Fig. 4.19



= 4 - cos0, L =sin6
CM N
a’ b?

S+——— =cos’ 0+sin’ 6 =1
(CM)” (CN) '

3. Problem : Findthe condition for the line

2 2
(1) Ix+my +n=_0to be atangent to the ellipse x_2 +y—2 =1.
a
x2 2
(1) Ix +my +n=0to be anormal to the ellipse pe + [);—2 =1.
Solution
x2 2
(1) Letlx+my+n=0beatangentat P(0)=(acos0,bsin0)ontheellipse — + Y 1.
2 b2
a

.. Equation ofthe tangent at P(0) is xcosf + ysin®

then comparing the coefficients

cos® sin® -1 al . —bm
= =—=cosO0=——,sinO =
al bm n n

» squaring and adding

272 2.2
a’ll b'm
n n

weget 1=

2 2
LetIx+my+n=0beanormal at P(0)=(acos 0, b sin 0) on the ellipse 2—2 + T

ax by

.. Equation ofthenormal at P(8) is =q* —b* issameasthe line

cosO sin0

Ix+my=-nthen comparing the coefficients.

[cos® —msinO -n —an ) bn
= = 5 = COos 0=

————, sin _.
a b a*-b I(a* -b*) m(a* —b*)

2.2 2.2
an b'n

2@ -0 m (@ -b*)

Squaring and adding we get 1=

‘ 2 b (a2 —b2)2
l.e., —2-|-—2 = —2 .
l m n

=1 is same as the line Ix + my=—n,

Y 1.

153



| Mathematics - IIB |

y?

4. Problem : Ifthe normal at one end of a latus rectum of the ellzpse — + 7T s =1passes through one end

of the minor axis, then show that e? + °> = 1 [e is the eccentricity of the ellipse]

2 b2
Solution : Let L bethe one end of the latus rectum of *— 2}—2 =1. Thenthe coordinates of L = (ae —]
a’ a

Hence equation ofthenormal at L is

a’x b’ y s 12 ‘\' X /

— =a"—-b 1

ae b*la plomma

“_ ay= a’ —b? / <

¢ X/ — > X

isaline passes through the oneend B” = (0, — b) C y N

) 5 Tangent
or minor axis of x_2 + Z—z =1 asshownin Fig. 4.20. B’ (0.-»

a
, ’
a(O) a(=b) = Y
e Fig. 4.20
ab=a*-a*(1-¢%)
b b* a*(-é’
ab=a’e* > e’ =—=¢" =_2=L26)=1_82 =e'+e’=1.
a a a

2 2
5. Problem : If PN is the ordinate of a point P on the ellipse x_2 + Z—Z = 1 and the tangent at P meets the
a

X-axis at T then show that (CN)(CT) = a® where C is the centre of the ellipse.
Solution : Let P(0)=(acos 6, bsin0)beapointontheellipse

2 2
by vy . .
=z + el 1. Then the equation of the tangent at P(0) is
N
xcose_l_ysme:l or —— +—2 =1 meets the N
a b a b
cosO  sin0 / P(6)
X-axisat T < T S
T
a
x-intercept (CT) = and the ordinate of P
cos0
is PN =bsin O then its absicca CN =a cos 0.
N

(seeFig.4.21)

. . — a = 2
- (CN)-(CT) (acosﬂ)(cose] a-,




(1]

6. Problem : Show that the points of intersection of the perpendicular tangents to an ellipse lie on a

circle.

2 2

Solution : Letthe equation of the ellipse x—2 + Z)—Z = 1(a>b). Any tangentto it in the slope intercept formis
a

y=mxi\/azm2+b2 .. (1)
Letthe perpendicular tangents intersectat P(x, ).
. Plieson (1) for somerealm, i.e.,y,=mx, im .
(O —mxl)2 = a’m?*+ b,
or

(x}—a?)m?—2x,y,m+ (y? —b?)=0being a quadratic equation in ‘m’, has two roots say

m, and m, then m,, m, are the slopes of tangents from P to the ellipse
2 2
omym, = yizb
R W) X -

232
-1 = [M] [ -.- The tangents are perpendicular to each other

2_ 2
X —d sothatm m,=~1]

iLe., x% +y% =a’+b%

If, however, one of the perpendicular tangents is vertical, then such pair of perpendicular tangents
intersect at one of the points (+a, +b) and any of these points satisfies x*+)? =a?+ b?.

.. The point of intersection of perpendicular tangents to the ellipse S =0 lies on the circlex2 +% =a?+ b2.
4.2.10 Note

The circlex?+)?=a?+ b?is called the ‘Director circle’ of the ellipse S=0. .e., the centre of the director
circle is the centre of the ellipse and itsradius is equal to v/ a? + b> .

7. Problem : Ifacircleis concentric with the ellipse, find the inclination of their common tangent to the
major axis of the ellipse.

2 2
Solution : Letthe circle be x2+)2 =72 and the ellipse be x_2 + Z_Z = 1 with a>b.
a

The major axis of the ellipse is, therefore, the X-axis.

If r<b<a,thenthe circlelies wholly inside the ellipse making no common tangent possible.
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Also, if b<a<r, thetwo curves cannothave acommon tangent (the ellipse lies wholly inside the circle)

Therefore,b<r <a.

Case(i): b<r<a(seetheFig.4.22)

Let one ofthe common tangents to the curves make angle ‘0’ with the positive direction ofthe X-axis.

Let the equation of the tangent to the circle be x cos ot +y sin ot= r, where o is the angle made by the

radius through the point of contact with the positive direction of the X-axis.

.'.6=E+oc or 6=oc—£.
2 2

Since x cos o+ ysin o.= r touches the ellipse also, we have

2 2

acos?o,+ b2 sin o= r2.

- a?cos?| 0-L |+ p2sin?| 0-1 |= 2 or
2 2

a’ cos’ E+(9 +b%sin? E+6 =r?
2 2

NY

. X’ <
. a’sin?0+ b2 cos?0 =72 w%

2 1—-cos26 e 1+cos26 _ 2
2 2

— (a?+ b2+ (b* - a?) cos 20 = 272

2, 42 2
=>c0s26=%
a —b
2, 12 2
" 6=lcos_1 477 - +2b 22r
2 a —-b ’

Case(ii) : When r=a.

Fig. 4.22

The circle touches the ellipse at the ends of the major axis of the ellipse so that the common tangents would

n
be x=+a, sothat 9=§.



Case(iii) : When r=5
The circle touches the ellipse at the ends of the minor axis of the ellipse, so that the common tangents
wouldbe y=+b, making0=0.

Exercise 4(b)

I. 1. Find the equation of tangent and normal to the ellipse x>+ 8% =33 at (-1, 2).

Find the equation of tangent and normal to the ellipse x> + 2% —4x+ 12y + 14=0at (2, -1).

wooN

Find the equation of the tangents to 9x? + 16y = 144, which makes equal intercepts on the

coordinate axis.

4. Find the coordinates of the points on the ellipse x> + 3y =37 at which the normal is parallel to the
line 6x — 5y =2.

5. Find the value of k if 4x+y+ k=0 1is a tangent to the ellipse x>+ 3% =3.

2 2
6. Find the condition for the line x cos ot +y sin o0 = p to be a tangent to the ellipse — + b_2 =1,
a

II. 1. Find the equations of tangent and normal to the ellipse 2x% + 3y = 11 at the point whose ordinate
is 1.

2. Find the equations to the tangents to the ellipse x> + 2)? = 3 drawn from the point (1, 2) and also
find the angle between these tangents.

3. Find the equation of the tangents to the ellipse 2x? + y? = 8 which are
(1) parallel tox—2y—-4=0 (ii) perpendiculartox+y+2=0
(iii) which makes an angle g with x-axis.
4. A circle of radius 4, is concentric with the ellipse 3x? + 13)? =78. Prove that a common tangent is
inclined to the major axis at an angle g .
III. 1. Show that the foot of the perpendicular drawn from the centre on any tangent to the ellipse lies on
the curve (x2 +y%)? = a’x* + b*?.

2. Show that the locus of the feet of the perpendiculars drawn from foci to any tangent of the ellipse is
the auxiliary circle.
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3. The tangent and normal to the ellipse x2+4)2 =4 ata point P(0) on it meets the major axis in

2

T
— and QR =2 then show that 6 =Cos™! (—) )

QandR respectively. If0 <0< >

3

[Key Concepts ]

2 2

% Equation of ellipse in standard from is x_2 + Z—z =1 (a>b). Centre (0,0) and having foci (+ae, 0)
a

2_H2
directrix x = =< and eccentricity e= "a 2b .
e a

2 2

% IfPisanypointontheellipse x_2 + z—z =1 (a>b)andfociare Sand S’ then SP+ S’ P=2a.
a
2 2
% Theequation ofthe ‘auxiliary circle of the ellipse x_2 + Z_Z =1(a>b)is ¥*+)y2=a>.
a

% x=acos0, y =bsin0Oare called the parametric equations of the ellipse S = 0 and 0 is called the
parameter.

% If P(x;,y,) isapoint on the plane of the ellipse, then P lies outside, on or inside the ellipse S = 0

accordingas S, is positive, zero or negative.
2 2

% The condition for a straight liney=mx+ ¢ be atangent to the ellipse x—2+}b)—2 =1lisc?=a’m*+b>.
a
2 2 5 5
% y=mx+va’m* +b* is always a tangent to the ellipse x—2+Z—2 =1 at (—%, b?) and
a
2 2
(%, = %J respectively (¢ # 0,c?=a’m?*+ b?).
% Theequation of the tangentat P(x,,y,) tothe ellipse S=01s S, =0.
%+ Theequationofth latP heellipse S=0is &2x ~ ¥ _ ;2
X e equation of the normal at P(x,,y, ) to the ellipse S = 1STI—TI =a -b

(x; # 0,y # 0).
xcos0 4 ysin© _
a b

% Equation ofthe normal at P(0) on the ellipse S=01is —4*_ — .by = ¢* — b* when
cosO® sinB

% Equation ofthe tangent at P(6) on the ellipse S=01s 1-

20 & g 3m
0 0,2,n,2

% Equation ofthe director circle of the ellipse S=0 is x*>+)y?>=a?+ b,




Historical Note

The name ofthe curve, ellipse finds a place in Rigveda. The ellipse was first studied by Menaechmus.
Euclidwrote about the curve and it was given its present name by Apollonius (262-190 B.C.). The focus
and directrix of an ellipse were first considered by Pappus (290-350). In 1602 A.D., Kepler discovered
that the orbit of Mars was elliptical with Sun at one focus. Infact, the word focus was introduced first by
Keplerin 1609. There is no exact formula for the length ofan ellipse in elementary functions. Srinivasa

Ramanujan gave the formula : m[3(a +b) — \/ (Ba+b)(a+3b)] whichisaclose approximation ofthe
actual length.

Desargues wrote in 1639 a treatise on conic sections which later was recognised an a classic in the early

development of synthetic projective geometry. 7

Answers

Exercise 4(a)

L 1. 7x*+7y* —4xy— 26x+10y+10=0

2 2 2 2 1
2. LY o 3. 24 o 4, e=—
16 15 64 48 V2
5. 9=Z MM TR 32452-3) 7. 16x% +25y% = 400
4°47 4 4

22

8.
3
IL 1. Lengths of Latus | e centre Foci Equation of
Major Minor |Rectum directrices
axis axis
Q) 8 6 on |41 | .0 (*#47,0) Jix=+16
iy 3 _
(ii) 4 2 1 > | 4D (1,-1+£3) | 3y+3 £4=0
1
i) 42 4 242 L | @303 | x=6x=2




2. (1) 9(x—2)2+8(y+1)2=128

111

1L

(i)

(iv) 9(x—2)2+12(y + 1)2=64 or 12(x—2)>+9(y + 1)> = 64,

J7

x

25

1.

> » N

2 2
_+(y+3) por X043
25 25 45

y_
9
35

3
Exercise 4(b)

x —16y+33=0,16x+y+14=0
y+1=0,x-2=0

x+ty+5=0

(5.2)(-5,-2)

k=47
2

p*>= a* cos? o+ b? sin? .

. Tangents 4x+3y—-11=0 and 4x—-3y+11=0

Normals 3x—4y — 2=0 and 3x+4y+2=0
x—=2y+3=0, S5x+2y-9=0, Tan™! (12)

(i) x=2y+6=0, (i) x—y+2,3 =0, (i) y=x£2.3

Mathematics -

1B

(i) (x—4)2+9(y+ 1)>=25



Chapter 5

FHypertiala

“The knowledge of which geometry aims is the knowledge
of the eternal”
- Plato

Introduction

We defined that a hyperbola is a conic in which the
eccentricity is greater than unity. Thus a hyperbola is the locus
of a point that moves so that the ratio of the distance from a
fixed point to its distance from a fixed straight line is greater
than 1. The fixed point is called focus, the fixed straight line
is called directrix.

5.1 Equation of hyperbola in standard
form - Parametric equations

In this section we study the equation of a hyperbola in
the standard form and also study its parametric equations.

5.1.1 Equation of a Hyperbola in the standard form

Let S be the focus, ZM be the corresponding directrix
and SZ be the perpendicular from S on the directrix. We can
divide SZ both internally and externally in the ratio e : 1,
(e>1); let the points of division be A and A" as shown in
the Figure 5.1. Let C the midpoint of AA”. Now take CZ as
the axis of X and the perpendicular at C as Y-axis.

(427 - 347 B.C.)

Plato was a disciple of Socrates.
Arithmetic was one among various
subjects of his study. He was parti-
cularly interested in the mysticism of
numbers.

He appreciated so highly the value
of geometry. He ran an Academy and
at its entrance he displayed a sentence

“Let no one ignorant of geometry enter

9

my doors.’
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MY
M’ 4 B M P
X% ° > X
S’ A" |z2 C Zl A N S
B/
N Y/
Fig. 5.1

Let AA’be2a
SA=eAZ,SA’=eA’Z adding
SA +SA" =e(AZ+A'7)
CS—CA+CS+CA'=e(AA)
2(CS)—a+a=e(2a) = 2(CS) = 2(ae) = CS=ae.
Hence focus S = (ae, 0)
SA” —SA = ¢(A"Z-AZ) = ¢(CZ+A'C-CA+CZ)
AA’" = e(2(CZ)+a—a) = 2e(CZ)
2a = 2eCZ

cz=4

e
.. Equation of'the directrix is x = % .

Let P(x, y) be any point on the hyperbola, PM, PN be the perpendiculars from P upon the directrix
and X-axis respectively.

Thus  SP=e(PM) = (SP)? = ¢2(PM)?
(x—ac)+)? = e (x—4)°

xX(e2—1)-y* = a¥ - 1)

2 2
x Y - 2 - 202 ..
== ———5——=1, Put b* = a“(e-—1)>0 soe>1
2 2D ( ) [ ]
2 2
then we obtain the equation — - y—2 =1. .. (1)
b

We have shown that the coordinates of P must satisfy the algebraic condition (1) when P
satisfies the geometric condition SP = e(PM).
Conversely, if x,y satisfy the algebraic equation (1) with »?=a?*(e*— 1) and

2 2
b

e>1 then 2= bz(x—z - 1] = S (7 -d)) =(2-1)(P*-d?) (2
a a



© SP = J(x—ae) +y* = x? +d%P —2aex+( —1)(x* —a®) [+ from (2)]

- \/(xe)2 —2(xe)a)+a* = \/(xe—a)2 =|xe—a|=e

x—ﬁ| = ¢(PM).
e

.. Psatisfies the geometric condition, when P satisfies the algebraic condition (1).
2 2

Thus the locus of P is x_2 - Z—z =1, the equation of the hyperbola in the standard form.

a

Now let S” be image of Sand Z'M’ be the image of ZM w.r.t. Y-axis. Taking S" as focus and

2 2

Z'M’ as directrix, it can be seen that the corresponding equation of hyperbola is also LIRS ARST

2 2
a b
Hence for every hyperbola, there are two foci and two corresponding directrices.
2 2
a +b

2
a

Wehave b? = a*(e?—1)and e>1 = e=

5.1.2 Trace of the curve
The equation of hyperbola in standard form is

SE——y——IZO .. (1)

where a>0,b>0 and b?=da?(e*-1).
(1) Put y=0inthe equation (1) then we getx =+a.
.. The hyperbola cuts the X-axis at A(a, 0) and A’(—q, 0).

(i) Putx=0inequation (1). Thenwe gety= ++/—b> doesnot existin the cartesian plane. Hence, the
curve does not intersect the y-axis.

. . b | .
(i11) Equation of the curve may be writtenas y=£— x*—a® then yisreal
a

& X2-ad*>0 o x<-a or x>a.

1.e., the curve does not exist between the vertical lines x =a and x=—a further from x=* % \ y2 +b°
then x is real for all values of y and hence each horizontal line y =k intersects the hyperbola at
exactly two points. Also x — +oo when y — +oo i.e., the curve is unbounded.
. . _ b 2 _ 2
(iv) For any value of x belonging R~ (—a, a), we have two values of y = *—+vx” —a” equal but
a

opposite in sign.
.. The curve is symmetric about the X-axis (Fig. 5.1).

(v) Foreachreal y, we have two values x =+ %«/ y? +b* equal but opposite in sign

.. The curve is symmetric about Y-axis.

.. The curve consists of two symmetrical branches each extending to infinity in two directions as
shown in Fig. 5.1.
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(vi) The AA’ along the x-axis is called transverse axis of the hyperbola. B and B are taken on y-axis

such that BC = B'C=b= ave’ —1. The BB’ is called the conjugate axis. Notice that the curve
does not meet its conjugate axis.
(vil) Asintheellipse, the symmetry ofthe curve about its axis shown that it has two foci

[S(ae, 0), S'(~ae, 0)] and two directrices x=+<

(viii) Ciscalledthe centre ofthe hyperbola. It is the point of intersection of the transverse and conjugate
axis. Itcan be shown that C bisects every chord of the hyperbola that passes through it.

5.1.3 Theorem : The difference of the focal distances of any point on the hyperbola is constant.

Proof: Let P(x,y) be any point on the hyperbola whose centre is the origin C fociare S, S’ directrices are ZM

and Z'M’ as showninFig. 5.2.
MY

& 7 d z N S

Fig. 5.2

Let PN, PM, PM’ be the perpendiculars drawn from P upon x-axis and the two directrices
respectively.

Now  SP = e(PM) = e(NZ) = ¢(CN-C2Z).

a
SP = e(X—;] =ex—a.

and SP=ePM)=e(NZ')=e(CN+CZ") = e(x+g) =ex+ta.
e

S’P-SP =2a.
By the above theorem, the hyperbola is sometimes defined as the locus of a point, the difference of
whose distances from two fixed points is constant.

5.1.4 Notation
2 2

We denote the expression — — 4

e b—2 — 1 by S throughout this chapter. Thus the equation

of a hyperbola in standard form is S = 0. As usual, we use the following notation.



XX DA
S, = 2L -2l
! a’ b?
_ X N2
S, =122 _J22
12 az b2
2 2
SUEX_1_)’_1_1
a’> b’

5.1.5 Definition (Rectangular Hyperbola)

Ifin a hyperbola the length of the transverse axis (2a) is equal to the length of the conjugate
axis (2b), the hyperbola is called a rectangular hyperbola.

Its equation is x* —y* = a* [ a=b]
2, 22 2
a +b 2a
In this case e* = T =—F =2 = e=+2.
a a

The eccentricity of a rectangular hyperbola is V2.

5.1.6 Definition (Auxiliary Circle)

The circle described on the transverse axis of a hyperbola as diameter is called the auxiliary
circle of the hyperbola.

The equation of the auxiliary circle of S=0 is x+)?=a?

5.1.7 Parametric equations

Let the equation of the hyperbolabe S =0, then the equation of the auxiliary circle is x2 +y% = a?

Let P(x, y) be any point on the hyperbolaand C be the centre. Let M be the projection of P on
the transverse axis. Draw the tangent QM to the auxiliary circle from M (Fig. 5.3). If ZMCQ =0 then

TY P(x, y)

\Q

X'< g

N CJA M >X

v
Fig. 5.3
PR
the x coordinate of the point P=CM =x=a sec 8. Substituting this value of x in — — b—2 =1, we
2 a2 2 2 a
have &;6 - y_2 =1 = y_2 = tan?0= y=+btan 6.
a b
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Therefore, any point on the hyperbola can be expressed as (a sec 0, b tan 6) or
(asec (2m—0), btan (2m—0)) for some 0 in [0, 27).
. T 31 . . x? y2
Conversely, forany 0in [0, 21) ~ >5[ the point (asec 6, b tan 0) clearly satisfies —-— 7 =1
a

and so, it lies on the hyperbola. For this reason, the equationsx=asec9, y=5btan0(0<0<2m, 6 # g

3n
and 0 # ) ) are taken as the parametric equations of the hyperbola and 6 is called the parameter. The

point P(a sec 0, b tan 0) is for the sake of brevity, called the point 6 and is denoted by P(0) some times.

5.1.8 Definition (Conjugate hyperbola)

The hyperbolawhose transverse and conjugate axis are respectively the conjugate andtransverse
axis of a given hyperbola, is called the conjugate hyperbola of the given hyperbola.

2 2 2 2
The equation of the hyperbola conjugate to S = x_2 —z—z—l =0is §'= x—z—Z—2+1 = 0.
s 2 a a
For x_z - =1, (1) The transverse axis lies along X-axis and its length is 2a.
(i1) The conjugate axis lies along Y-axis and its length is 25.
2 2
For x_2 —= =-1, (i) Thetransverse axis lies along Y-axis and its length is 2b.

(i) The conjugate axis lies along X-axis and its length is 2a.

. The hyperbola S’ = 0 is called the conjugate hyperbola of S =0. Also S =0 is called the
conjugate hyperbola of S"=0. Thus each is called the conjugate of the other.

5.1.9 Various forms of the hyperbola
2 2 22

LetS=2 -2 _1=0be ahyperbolaand S’ = x——y—2+1 = 0 be its conjugate hyperbola (see

. 2 b 2
Fig.5.4).

a b

NS
/-

Y
/
B’

, Y’

Fig. 5.4



Hyperbola
2 .2
Xy
S=—-—=-1=0
a’ b

Conjugate hyperbola
2 2
r_ X y
S=—-—+1=0
a* b

1. Transverse axis is along X-axis (y = 0)
length of the transverse axis is 2a.

2. Conjugate axis is along Y-axis (x=0)
length of the conjugate axis is 2b.

3. Coordinates of the centre (0, 0).

4. Coordinates of the foci (+ae, 0).

: . ) a
5. Equation ofthe directricesx=t—.
e

.. a’ +b’
6. Eccentricity e= 7
a

Transverse axis is along Y-axis (x =0)
length of the transverse axis is 2b.

Conjugate axis is along X-axis (y =0)
length of the conjugate axis is 2a.

Coordinates of the centre (0, 0).
Coordinates of the foci (0, +he).

: . . b
Equation of the directrices y= £ —.
e

B n?
Eccentricity ¢ = | .
\/ b2

5.1.10 Centre not at origin

If the centre is at (A, k) and the axes of the hyperbola are parallel to the coordinate axis, then by
shifting the origin (4, k) by translation of axis and using above properties of S=0 and S’ = 0 the

following results can be obtained.

Hyperbola

2 2
C )

a b

Conjugate hyperbola
Y 22
o
a b

1. Transverse axis is along y =k,
length of the transverse axis is 2a.

2. Conjugate axis is along x =h
length of conjugate axis is 2b.

3. Coordinates of the centre (4, k).
4. Coordinates of the foci (4 + ae, k).

e
.. a’ +b?
6. Eccentricity e= -

o . . a
5. Equations of'the directrices x=h*—.

Transverse axis is along x = 4,
length of the transverse axis is 2b.

Conjugate axis is along y =k,
length of conjugate axis is 2a.

Coordinates of the centre (4, k).
Coordinates of the foci (4, k +be).

: . . b
Equations of the directrices y=k+—.

e
[ 2, 2
. . ’ +
Eccentricity e’ = atb
b2

5.1.11 Note
2_ 2

To find the foci, centre, equations of the directrices, etc. for a rectangular hyperbolax?—)?=a
(or) 32 —x2=a? replace ‘b> with ‘a’ and e = v/2 in5.1.9and 5.1.10 as the length of the transverse
axis is equal to the length of the conjugate axis.
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5.2 Equation of Tangent and Normal at a point on the hyperbola

The concepts of focal chord, latus rectum, tangent, normal ata point on ahyperbola are defined analogously
asinthe case ofanellipse. Inthe following, we list out certain important properties of ahyperbola. The reader
can easily supplement the proofs of these, which are similar to those of an ellipse.

1. Apoint P(x,y,) in the plane of the hyperbola S = 0 lies inside the hyperbola (i.e., in the region not
containing the centre) if S, >0, lies out side (i.e., in the region containing the centre) if S, ; <O and
on the curve if S, = 0.

2. The end of'the latera recta are (i ae, £ %2) and the length of the latus rectum is 27192.
3. The equation of the tangent at P(x,, y,)i1s S; =0.

4. The equation of the tangent at ‘0’ is £ s sect— Ltanh=1 (6 20 3“]

b 272
azx bzy C
5. The equation of the normal at P(x,y,)is =~ + y =a?+b? (v; # 0) which is always the case
X 1
except at vertices. At vertices x-axis is the normal.
b
6. The equation of the normal at ‘9’ is —2 + Y 22 6 # 0, m).

secO tan0O
7. The condltlon for a straight line y =mx + ¢ to be a tangent to the hyperbola S =0 is

2 - a b2
Hence the equation of a tangent to the hyperbola in slope form may be taken as y=mx+~/a*m?* —b*.

2
For any real value of m with m? > 2—2 there are two parallel tangents to the hyperbola. Note that any

horizontal line cannot be a tangent to the hyperbola. Two vertical tangents are x = +a.

5.2.1 Asymptotes of a curve

Definition 1 : 4 non vertical line with equation y = mx + c is called an asymptote of the

graphof’ y = f(x) ifthe difference of f{x) and mx + c is non-zero and tends to ‘0’ as x — o or
X ——oo.

Definition 2 : 4 vertical line x = a, is called a vertical asymptote of the graph y = f(x) if
|fx)] = oo as x — a from the left or from the right.

1. Example: y=xisan asymptote of the curve y= x + % .
[+ fx)— x=% —0as x — oo Or x — —oo]
2. Example: yaxis (x=0)is a vertical asymptote of the curve y = x +%.

+H=x+ L ifx>0,| ) - o asx — 07 also

[~ A=

|Ax)| = —(X+%) if x<0 and therefore |f{x)]— oo asx — 07]



2 2
Asymptotes of the hyperbola £~ —2— =1
a* b
Because ofthe symmetry ofthe hyperbola about both the axes, we consider the portion of the curve in the

first quadrant whose equationis y = £ %V x*-a , (x>a).

AY

>X

VY’
Fig.5.5

If P(x,y,) isapoint on this branch of the hyperbola and (x|, y,) is a point where ordinate through

. _b N b, 2 2y _ ab ab b
Pmeetsthehney—ax, then 0 <(y,—y,)= 7(x —y/xi —a”) —X1+\/xf—7£ X, andC)‘C—lao as

x; — oo therefore y,—y, — 0 as x; — .

Therefore the line y = -7 is an asymptote of the hyperbola. By considering the portion of the

curve y= —% x12 ~a*, (x<—a) itcanbe similarly seen that y = —%x is another as asymptote for this
hyperbola.
5.2.2 Note

(i) Fromtheabove equation ofasymptotes, it is clear that they pass through the centre of the hyperbola
and the axes of the hyperbola are the angle bisectors of the angle between the asymptotes.
2 2 2 2

(i) LetS= x_z_ZT_l =0 behyperbola. Then S’ = X—Z—Z—2+1 = 0 is its conjugate hyperbola and
a a
2 2
A= X——Z—z = ( isthe combined equation of its asymptotes.
a
S+ S =2A.

(iii)) Evenifthe equation ofa hyperbola is not in the standard form, by suitable rotation and translation
ofthe coordinate axes, it is possible to transform the equation of the curve into the standard form
and accordingly, the combined equation of its pair of asymptotes. Therefore, we observe that the
equation to a hyperbola and the combined equation to its asymptotes differs only by a constant. (Notice
that the equation A= 0 differs from the equation S=0 by a constant and the equation S’=0 differs from
A=0Dby exactly the same number that A=0 differs from S=0).
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5.2.3 Solved Problems
1. Problem : Find the centre, eccentricity, foci, directrices and the length of the latus rectum of the
following hyperbolas. (i) 4x°— 92 -8x—32=0 (ii) 4(y +3)°-9(x-2)? = 1.
Solution
(i)  4(x*-2x)—-9?=32
4x*-2x+1)-92=32+4
4(x—1)2-91%=36

(=12 ¥ _
9 4

.. Centre of the hyperbola is the point (1, 0).

The semi-transverse axis a = 3, the semi-conjugate axis b =2.

oo @42 _ [9+4 _ 13
. = s
a

Coordinates of the foci are = [1 +3
The equations of directrices x =1t==2= = x=1% 2

Length of latus rectum = %4) = % .
(i) The given equation of the hyperbola 4(y + 3)> — 9(x —2)> = 1. It can be written as
L=(BP (=2 _ |
1/4 1/9
Centre of the hyperbola is the point (2, -3).

The semi-transverse axis b = % , the semi-conjugate axis a = % .

. +b 3
St e ER

Coordinates of the foci are (h, k + be) = ) = (2, -3+ %)
The equations of directrices y = k+2 = -3+ = y=-3+t—3_
qu y P y > \/E
Length of latus rectum = 2479) = i
1/2 9
2. Problem : If e, e, are the eccentricities of a hyperbola and its conjugate hyperbola prove that
e’ e} .
Solution : Lete, e, be the eccentricities of the hyperbola S = x_z_Z_z_l = 0 and its conjugate hyperbola
2 2 a

iss=2 -2 41=0 respectively, then

e

Q



e = fa2+b2 fa2+b2 (5.1.10)

1,1 _ a+b2_1
& e a+b2 a+b2 a*+b?

2
3. Problem: (i) Ifthelinelx +my +n = 0is a tangent to the hyperbola * —2 2 =1 then,

B2
show that a’I’ — b°’m? = n.

2
(i) Ifthelx + my + n= 0is a normal to the hyperbola Z—; —Z—z =1 then show that
@ b o (a* +b*)?
P om

Solution
2 2

i) Lettheline L =/x+ my+n=0be atangent to the hyperbola S = XY 1-0atP 0).
2 2
a

Then the equation of the tangentto S=0 at P(0)is S, = Y sec 9—%tan 0 —1=0. Since L=0andS, =0
a

. . . secH tan O 1
represents same line, comparing coefficients, = — P = —-_.
m n
~secO = -4 and tang=D0m
n n
272 2 2
. 1=sec’®— tan? 0= EL — D" (or) 212 — p2? = 2.
n n
2 2
(i) Lettheline L=Ix+my+n =0 beanormal tothe hyperbola S = x—z—Z—z—l =0 at P(0).
a
. . b
Then the equation of the normal to S=0 at P(0) is + 2 (a2 +b2) =0
secH tan 0
represents same as L= 0 then, comparing coefficients.
l m n IsecO  mtan© -n
= = ey = = .
alsec®  b/tan® —(a%+b?) a b a’ +b?
-na -nb
secl = 75— g anb = —
l(a”+b7) m(a”+b”)
, , na’ n’b>
But 1= sec” 6 — tan ezlz(a2+b2)2_m2(a2+b2)2
2 2 2 22
l-e-’ lz mz n2 .
4.Problem : Findthe equations of the tangents to the hyperbola 3x° — 4y° = 12 which are (1)
parallel and (ii) perpendicular to the liney =x—7.
2 2
Solution : Equation of the given hyperbola can be written as XT—% =1 so that a*> =4, b>=3.

Equation of the given line y =x — 7 and its slope is ‘1°.
(1) Slope ofthe tangents which are parallel to the given line is 1 (i.e., m=1). Equations ofthe tangents

are y=mx+a’m? —b* =x+ J4-3 ie, y=x+1.
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(i) Slope ofthe tangents which are perpendicular to the given lineis (-1) (i.e.,m=—1)
Equations of tangents which are perpendicular to the given line are

y = (=1 41> -3 ie., x+y=+l
5. Problem : Prove that the point of intersection of two perpendicular tangents to the hyperbola

2 2
X
—2—% =1 lies on the circle x* +y° = a’ —b°.
Solution : Let P(x,, y,) be the point of intersection of two perpendicular tangents to the hyperbola
2 2
S= X—Z—Z—z—l = 0. The equation of any tangents to S =0 in the slope intercept form is
a

y=mx+~va’m*—b*. If it passes through P(x,y,) theny, —mx = £+ a’m* -b?, squaring both sides
y12 + mlez —-2mxy, = a*m? — b?

(or) (x%—az)m2—2x1y1m+(y12+b2)=0 .. (1)
(1) is a quadratic equation in ‘m’ and therefore, gives two values of m say m , m, which are slopes of
tangents from (x,, y,).

) +b’
. .m;m, = product of roots of (1) = 35— .
" +b .
2 =—1 [-. tangents are perpendicular = m m,=—1]
2

ie., x12+y12=a2—b2.
Hence point P(x,, y,) lies on the circle x2+y2=a%-b%
Note that the circle x? +? = a® — b? is called the director circle of the hyperbola S = 0.
6. Problem : 4 circle cuts the rectangular hyperbolaxy = I inthe points (x,.y,), r = 1, 2, 3, 4. Prove that
XpXpX3Xy =YYy = 1
Solution : Let the circle be x + )2 = a?.

1
Since (t, ;j (t # 0) lies on xy = 1, the points of intersection of the circle and the hyperbola are given by

1
S =a
t

= - +1=0

12+

= #+0.2-a**+0.t+1=0.
Ifz,, 7,, ; and z, are the roots of the above biquadratic, then 77,452, = 1.

1
If(x,y,)= (tr,—j , r=1,2,3,4,then x x,x3x,=1,,t51,= 1,
tr
1

and y, v, 13, = —tlt2t3t4 =1.



7. Problem : [If four points be taken on a rectangular hyperbola such that the chords joining any two
points is perpendicular to the chord joining the other two, and if o, B, y and & be the inclinations
to either asymptote of the straight lines joining these points to the centre, prove that

tan o tan P tany tan 8= 1.
Solution : Let the equation of the rectangular hyperbola be x2 — »? = a%. By rotating the X-axis and the

2 2

. .. T . . .
Y-axis about the origin through an angle 7 in the clockwise sense, the equation x> — y* = @ can be

transformed to the form xy = c2.

c
Let (ctr,t—j ,vr=1,2,3,4(t, # 0) be four points on the curve. Let the chord joining

r

c c C c
A= (CZI’I_J ,B= {sz,t—j be perpendicular to the chord joining C = (Ct_?,’t_j andD= (Ct4’t_J .
1 2 3 4
c_c
The slope of AB is h b o_ -1 [No chord of the hyperbola can be vertical]

cy—ct, tt,

Similarly slope of CD is — L,

) —_ e 1 1
Since ABLCD,| — || —|=-1
nty, )\t
= 1t = —1 - (1)

We know the coordinate axes are the asymptotes of the curve, If OA, OB, OC and OD make
angles o, B, y and & with the positive direction of the X-axis, then tan o, tan 3, tany and tan J are their

respective slopes. [O, the origin is the centre, None of OA, OB, OC and OD s vertical ]

c
o . 1
- tano =1 L Similarly, tan} = i, tany = L and tand = —.
_ 2 2 2 1
1
o tano tanf tany tand = - =1 [From (1)]
1ot

If OA, OB, OC and OD make angles o, B, ¥ and & with the other asymptote the Y-axis then

cot o, cot 3, coty and cot d are their respective inclinations so that cot o cot 3 coty cot d
= tan ot tan 3 tan y tan &
= 1.
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Exercise 5(a)

. Onefocus ofahyperbolaislocated at the point (1,—3) and the corresponding directrix is the line y=

3
2. Find the equation of the hyperbola ifits eccentricity is 5
Find the equations of the hyperbola whose foci are (+5, 0), the transverse axis is of length 8.
Find the equation ofthe hyperbola, whose asymptotes are the straight lines
(x+2y+3)=0,(3x+4y+5)=0and which passes through the point (1,—-1).
If 3x—4y+k=0isatangent tox?—4y*=>5 find the value of k.

2

2
Find the product of lengths of the perpendiculars from any point on the hyperbola )16_6 - % =1 toits

asymptotes.

5
Ifthe eccentricity of ahyperbolais 1 then find the eccentricity of its conjugate hyperbola.

Find the equation of the hyperbola whose asymptotes are 3x =+5y and the vertices are (+5, 0).
Find the equation of the normal at  =7/3 to the hyperbola 3x* — 42 = 12.
Ifthe angle between the asymptotes is 30° then find its eccentricity.
Find the centre, foci, eccentricity, equation of the directrices, length of the latus rectum of the following
hyperbolas

(i) 16y%—9x2 =144 (i) x*—4%2=4
(iii) 5x%2—-4y*+20x+8y=4 (iv) 9x2—16y2+72x-32y-16=0
Find the equation to the hyperbola whose foci are (4,2) and (8,2) and eccentricity is 2.
Find the equation of the hyperbola of given length of transverse axis 6 whose vertex bisects the
distance between the centre and the focus.

Find the equations of the tangents to the hyperbola x?> — 4)? = 4 which are (i) parallel
(i) perpendicular to the line x + 2y =0.

Find the equations of tangents drawn to the hyperbola 2x? — 3y? = 6 through (=2, 1).

. Prove that the product of the perpendicular distances from any point on a hyperbola to its

asymptotes is constant.

2 2
Tangents to the hyperbola % - % = 1 make angles 0,,0, with transverse axis of a hyperbola.
Show that the point of intersection of these tangents lies on the curve 2xy = k(x? — a?) when

tan 61 +tan 62 =k.

Show that the locus of feet of the perpendiculars drawn from foci to any tangent of the hyperbola

2
2—; — % = 1 is the auxiliary circle of the hyperbola.



2
3. Showthatthe equation g— 9 -t Sy = = L represents

(1) anellipseifc’is areal constant less than 5.
(i1) ahyperbolaif‘c’ is any real constant between 5 and 9.

(ii1)) show that each ellipse in (i) and each hyperbola (ii) has foci at the two points (+2, 0),
independent of the value ‘c

32
4. Show that angle between the two asymptotes of a hyperbola = - ﬁ = 11is2 Tan™ ( Z ] or
2 Secl(e).
/ \{
[Key Concepts ]
2
% Equation of hyperbola in standard form is a—; - % = 1, centered C(0, 0) and foci (tae, 0),

. . - 2. b2
directrices x = ££ and eccentricity e = 1}% .
e

2
% IfPis any point on the hyperbola x2 Yo and foci are S and S’ then S'P-SP =2a.
p p 2 b2

—y? = a? is the equation of the rectangular hyperbola whose eccentricity is V2.

< The equation of the ‘auxiliary circle’ of the hyperbola S = 0 is x% + y? = a*.

& x2

% x=asec0,y=btan 0 are called the parametric equations of the hyperbola and 0 is called the
parameter.

% The condition for straight line y = mx + c to be a tangent to the hyperbola S = 0 is c2 = a?m? — b?.

2
% y=mx++a’m* —b* is always a tangent to the hyperbola x_j - = qat
a

b2

_a’m _b* a’m b? 2 2
( P C]and(c C]respectlvely(c;éOc a*m? - b?).

< The equation of the tangent at P(x;,y,)is S, =0.

2
« The equation of the normal at P(x,, y,) is 2x by _ a’+b>.

xl N
< Equation of the tangent at P(0) is Sec 0 - 3 Ytan0=1.
by 2 o\ B
o3 — = b .
Equation of the normal at P(0) is ——~ sec 6 g +

% The equation of the asymptotes of a hyperbolaS=0are y = i%x and the combined equation

2 2
of the asymptotes is % - % = 0.




176

Mathematics - I1IB

Historical Note

A special case of Hyperbola was first studied by Menaechmus (B.C. 350). The special case was xy
= ab, the Rectangular Hyperbola. Euclidand Aristaeus wrote about the general hyperbola, but studied

only one branch of it, while the hyperbola was given its present name by Apollonius, who was the first to

study the two branches of the curve. The focus - directrix property was considered by Pappus.

Y —

Answers

Exercise 5(a)

L 1. 4x*-5)2—8x+60y+4=0 2. 92— 16)%= 144
5 5 _ _ 144
3. 3x +10xy+ 8y +14x+22y+7=0 4. k=45 5. o5
5
6. 3 7. 9x2-25y2=225 8. x+y=7 9. J6-+2
IL. 1.{Q. [ Centre Foci Eccentricity Directrices Length of the
No latus rectums.
G | (0,0 (0,45) 5/3 5)+9=0 32/3
G | 0,0 (+~/5,0) Js52 J5x+4=0 |
Gi) | (=2,1) (1,1),(=5,1) 3/2 3x+2=0,3x+10=0 5
(iv) | (=4,-1) (1,-1),(=9,-1) 5/4 Sx+4=0, 5x+36=0 92

2. 3x2-y?—36x+4y+101=0

4. (i) Noparallel tangentsto x+2y=0.

3.

(i1) Perpendicular tangents are 2x —y + V15 =o.

5. x+y+1=0,3x+y+5=0

3x2—)2=27










Chapter 6

Jntegration

“The art of doing mathematics consists in finding that
special case which contains all the gems of generality”

- David Hilbert

Introduction

We have learnt the concept of differentiation in the

first year of the Intermediate course.

If a function f is differentiable in an interval I, i.e.,
the derivative of £, namely f "exists at each point of I, then
the following question arises naturally : “given f” on I, can
we determine f?”. In this chapter, we answer this question
by introducing the concept of integration as the inverse

process of differentiation. Also, we discuss standard forms

and properties of integrals.

Throughout this chapter, R denotes the set of all real
numbers and I, an interval in R. Unless otherwise stated, all

the functions considered here are real valued functions

defined over subsets of R.

John Wallis
(1616-1703)

John Wallis was born in 1616. He
was one of the ablest and most
original mathematicians of his days.
He wrote extensively on number of
areas. In 1649 he was appointed
Savilian professor of geometry at
Oxford, a position he held for 54 years
until his death in 1703. His work in
analysis did much to prepare the way
for his great contemporary, Isaac
Newton. Wallis was one of the first to
discuss conics as curves of second
degree equation rather than sections
of a cone.
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6.1 Integration as the inverse process of differentiation,
standard forms and properties of integrals

We begin with the definition of an indefinite integral of a function and then state the standard
forms of integrals for certain functions.

6.1.1 Definition

Let E be a subset of R such that E contains a right or a left neighbourhood of each of its
points and let f: E— R be a function. If there is a function F on E such that F'(x) = f(x) for
all x € E, then we call F an antiderivative of f or a primitive of f.

For example, we know that

i(sin x) =cosx, x€ R.
dx

Hence, if fis the function given by f(x) =cosx, x € R, then the function F given by F(x) =sinx,x € R
is an antiderivative or a primitive of f.

If F is an antiderivative of f on E, then for any real number &, we have
(F+k)Y (x)=f(x) forall x€ E.
Hence F + k£ is also an antiderivative of f.

Thus, in the above example, if ¢ is any real constant then the function G given by
G(x)=sinx + ¢, x € R is also an antiderivative of cos x.

6.1.2 Remark : If F and G are antiderivatives of a function f then F — G need not be a constant, in
general. Consider the following :

6.1.3 Example : Let E= (—o0, 0) U(0,0) and f: E—>R be defined as

Flx) = 1if x>0
YT x <0
Let us consider the following two functions :
F(x)={ x if x>0 d Glo ] XS x>0
—x if x<0 —x+10 if x<0’

Then F'(x) =f(x) = G'(x) forall x € E.
Therefore, both F and G are antiderivatives of f. But F — G is not a constant on E, since
(F-G)(2)=-5and (F - G) (-2)=-10.

In this example, note that the domain E of f is not an interval. However, ifa function is defined
on an interval, then we prove that the difference of any two antiderivatives is a constant. First, we
prove the following :



6.1.4 Theorem : Let © be a function defined on an interval I. Then @ is a constant function if and
only if © is an antiderivative of the zero function on I.

Proof : Assume that ¢ (x) = ¢ for all x in I for some constant ¢. Then ¢(x) = 0 for all x in 1.
Therefore, @ is an antiderivative of the zero function on I.

Conversely, assume that @ is an antiderivative of the zero function on I. Then
Qo (x)=0 (1)
forall x in L

Leta, b € I be such thata<b. Then [a, b]C I, @ is continuous on [a, b] and differentiable
in (a, b). Hence by Lagrange’s mean value theorem (10.7.5 of Mathematics -IB Text Book)
there exists a point d in (a, b) such that

pb)-pla) _
————==¢'(d).
e 7@ -(2)
Since [a, b]< I we have d €I; Now from (1), ¢'(d)=0. Hence, from (2), ¢ (b) = ¢ (a).
Since a, b €1 are arbitrary, @ must be a constant function.

6.1.5 Corollary : Let f be a function defined on an interval I and F be an antiderivative of f.
Then a function G on [ is an antiderivative of f if and only if G =F + ¢ for some constant function
con L

Proof: Let G=F +¢. Then G' = F = f. Hence G is an antiderivative of f.

Conversely, suppose that G is an antiderivative of /. Then G’ = f =F. Hence
(G-FY=G'-F=f—-f=0 on L. Hence G —F is an antiderivative of the zero function on I.
Now, by Theorem 6.1.4, G —F is a constant function on I, and hence G =F + ¢ for some constant c.

6.1.6 Note
(i) The above corollary is not true if the domain of f is not an interval. (see Example 6.1.3)
(i) Inthe subsequent discussion, we restrict our attention to functions defined on intervals.

(ii1) IfF is an antiderivative of f then {F +c:c € R} isthe set of all antiderivatives of f. Hence the
general form of an antiderivative of f is F + ¢, ¢ is a constant.

6.1.7 Definition (Indefinite integral)

Let f: I — R. Suppose that f has an antiderivative F on 1. Then we say that f has an integral
on I and for any real constant c, we call F + ¢ an indefinite integral of f over I, denote it by

J. f(x) dx and read it as ‘integral f(x)dx’. We also denote _[ f(x) dx as _[ f. Thus we have
[f =[f@dx =Fx)+c.
Here c is called a ‘constant of integration .

In the indefinite integral f f(x)dx, fis called the ‘integrand’ and x is called the ‘variable of
integration’.




Mathematics - IIB

6.1.8 Remarks

(1) Inthe Definition 6.1.7, we can regard any member of {F+c:c€ R} as f f(x)dx.

d
(i) Fromthedefinition of indefinite integral, I (’.f (x)dx ) = f(x).

@) If /:1— R isdifferentiable on, then f f(x)dx = f(x) + c, wherecisaconstantofintegration.

6.1.9 Standard forms : Inthe I year Intermediate course, we have studied the derivatives of some

functions. With this background, let us obtain indefinite integrals of some functions.

n+l
1. We know that i X =x" for n#-1.
dx| n+1

n+l
+ ¢, where cis a constant.

Hence, if n #—1, we have J-x" dx =
n+1
In particular, when » =0, we have

Idxzfl.dx=x+c.

2. We know that i(logex) :l if x>0
dx X

d 1
—|log,(=x) | = — if x<0.
and I [log,(—x)] . if x<0
log x on any interval I c (0, =
Hence J.ldx = |8 Y ) < (0,)
X log,(—=x) on any interval I C (—eo, 0),
so that J.ldx =log, | x|+ ¢ onanyinterval ICc R \ {0},
X
where cisa constant.

Note : Throughout this chapter where ever logx appears, itis to be understood as log,, x.

In a similar way, the following indefinite integrals can be easily obtained wherein c is a constant. The

intervals on which the integrals are valid are often specified by stipulating conditions on x.

3. Ifa>0and a #1, then
X
J.axdxz

+c¢, xeR
log, a

4, J.exdxzex+c, x €R.
5. J.sinxdx:—cosx+c, x €R.

6. J.cosx dx =sin x+ ¢, x€eR.
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5 nmwo . )
7. J.sec xdx=tan x+c¢, xelcR \ ? n is an odd integer (.
8. Icoseczxdx=—cot x+c¢, xelcR \ {nﬂ':nEZ}.
nwo. )
9. Isec xtanxdx=sec x+c¢, xe€lcR \ {7 : nis an odd 1nteger} .

10. jcosec xcotxdx =—cosec x+c¢, xelcR \ {nﬂ' ‘ne Z}.

1 . -
11. I dx =Sin" x+c¢ for|x|<1
1-x?

_ . _ T .
=—Cos 'x+c (since Cos'x = 5 Sin"'x) .

1 _
12, j dx = Tan x+¢ for xe R.
1+x2

_ . _ T _
=—Cot 1x+c(smce Cot 1xzz—Tan 1x).

1 -1
13. |———=4dx = Sec” x+c onIcR \ [-1,1]
'[|x| Vx? -1
= —Cosec ' x+¢ on IcR \ [-1,1].

1

V4 _
(since Cosec™" x = E—SCC 'x on any interval I C (—oo, —1) U (1,0)).

14. fsinhx dx =cosh x+c¢, xe R.

15. fcoshx dx =sinhx+c¢, xe R.

16. Isechzxdx: tanhx+c, xeR.

17. [cosech® x dx = —coth x+¢c, xe ICR \{0}.

18. J.sechxtanhx dx = —sechx+c, xeR.

19. ~I.cosech x cothx dx = —cosechx+c, xelc R \ {0}.

1

1+ x2

20. dx =sinh ' x+¢, xe R.

= log, (x+\/x2 +1), xeR.
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1 cosh™'x+ ¢ on (1, o)
21.] —dx = -
P | cosh™ (—x)+ ¢ on (—oo, —1).

log, (x+vx>=1)+ ¢ on (1, o)
~log,(—x+vx* —=1)+ ¢ on (=oo, —1).

= loge|x+m |+con IcR \ [-11].
6.1.10 Properties of integrals : We shall now prove the following algebraic properties of indefinite
integrals.
6.1.10 (a) Theorem : Ifthe functions f and g have integrals on I, then f + g has an integral on I and
I(f +g) (x)dx = ff(x) dx+fg(x) dx+c,
where c is a constant.
Proof : Since f and g have integrals on I, there exist functions F and G on I'suchthat F' = f and
G’ = g onl. Therefore
jf(x)dx =F(x) + ¢, and fg(x)dx =G(x) +¢c,,
where ¢, ¢, are constants. Now
(F+G)Y=F+G'=f+gon L
Hence F + G is an antiderivative of f+ g. Therefore, f+ g has integral on I, and
[(f +8)(x) dx = F(x)+G(x) +c
= If(x)dx—cl +.[g(x)dx—c2 +cy
where c; is a constant.
Let c¢=cy—c; —c,. Then
[(f+g)(x)dx = [ f(x)dx + [ g(x)dx+c.

6.1.10(b) Theorem : If f has an integral on I and a is a real number, then af also has an
integral on I and

f(af) (x) dx = aff(x) dx+c,
where c is a constant.
Proof : Since f has an integral, there is a differentiable function F on I such that F' = f on 1. We
have (aF) =aF = af.
Hence af has an integral on [ and by definition,

[ (@) dx = @F)(x) +¢ = aFx)+c=af f(x) dx+e,

where c is a constant.



6.1.11 Remarks

From Theorems 6.1.10(a) and 6.1.10(b), we can easily prove the following statements in which
c 1s a constant.

(1) If fand g haveintegrals on I then so does f—g and

[(F=o)w dx=[ Fde-[ godr+e.
(i) If £,/ ....f, haveintegrals onIthensodoes f +/,+--+f and

[(hi+fott ) dx = [ fi0dx+[ f(0dx++ [ f,(x)dx +c.

n
(i) If f},/,....f, haveintegralson Iand £k, k,, ..., k, are constants, then so does Zki f; and
i=1

[k i e = Yk [ fi0) e
i=1 i=1

Note that the finite sums in (iii) above can not be replaced by infinite sums.

(iv) When we consider logarithms to the base e, we do not make specific mention of the base. Thus,
for example, we write log# for log, .

6.1.12 Solved Problems
1. Problem : Find _[2x7dx on R.
Solution : f2x7dx = 2_[x7dx +c¢ (by Theorem 6.1.10(b))

x7+1
=2. +c (by 6.1.9(1
e (by 6.1.9(1)

X8
= —+c.
4

2. Problem : Evaluate fcot2 xdx onl CR\ {nm:n€Zr}.
Solution : fcot2 xdx= _[(coseczx—l)dx

=Icoseczx dx—J.dx+ ¢ (by Remark 6.1.11(1))
=—cotx—x+c (by6.1.9(8))

3. Problem : Evaluate J{f zj dx for x eR.

+x
6
. X -1 4 2 2
Solution : dex = |[[(x"—x"+1) - 1 dx
‘[(1+xzj '[( ) 1+ x°
=J.x4dx—.[x2dx+.[dx—jl 2a’x+c
+x
PR

= = -2 +x-2Tan 'x+c.
5 3



4.Problem : Find [(1-x)(4-3x)(3+2x)dx, x€R.
Solution: (1 —x) (4 —3x) (3 + 2x) = 6x> — 5x% — 13x + 12.

Hence

[A=x)(4-3x)3+2x)dx = [(6x* —5x" —13x+12)dx
= 6Ix3dx—SIxzdx—13fxdx+12fdx+c

. 13

_3 4—§x —-—x*+12x+c.
3 2

=—x
2

3
5. Problem : Evaluate I(x+l) dx, x>0.
X

3
Solution : (x+l) = x3+3x+§+%.

x X X
3
Hence I(x+l) dx = I(x3+3x+§+i3) dx
X X x

dx dx
3
=|xdc+3|xdc+3|—+|—+c¢
] ] [5+15

4

3 1

=X 425 +3logx ——+c.

4 2 2x
6. Problem : Find J.«/l+sin 2x dx onR.
Solution: We know that 1+ sin 2x = (sin x + cos x)2.
Therefore

. . T 37
- sinx +cosx, if 2nmr——<x<2nm+—"for some neZ
V1+sin2x = 4 4

—(sinx+cos x), otherwise.

b

J.\/1+sin2x dx = J.(sinx+cosx)dx

Isinx dx + J.cosxdx+c

Hence, if 2nz- % <x<2nm+ %ﬂ then

—cosx+sinx+c.

If 2n7z+37ﬂs x< 2n7z+%,

then _[«/1+sin 2x dx = _f[— (sinx+cosx)] dx
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3
7. Problem : Evaluate J.M dx for x>0 and verify the result by differentiation.

Solution :

Verification : d
x

= - (fsinxdx +fcosxdx)+c

= —(~cosx +sinx)+c

= cosx—sinx+c.

2x2
2x° =3x+5 3 pde 51
'[—2x2 dx = fxdx —3 J.? + EJ.? dx+c
2 3
= —-—logx——+c
2 2 X
2 3
2 2 X 2x 2x 752 .

This is the given expression and hence the result is correct.

Exercise 6(a)

I. Evaluate the following integrals.

I. [(x*=2x*+3)dx onR.

98]

11.

—_

12.

2. [2x+/x dx on (0, =)

*43x-1
- [¥2x? dx on (0, ). 4. j% dr, xel CRN\ {0}
X
(2 i on (0, ). 6. j(1+3—%j dx on TCR\ {0}.
X X X
I X+ 2) dx onR.
1+x
J. ex—l+ 2 ] dx onIcR \ [-1,1].
X xt -1

J

J
J

1

2
et gy on ICR \ {

1+ cos2x

1 1 2
1_x2+1+x2j dx on (-1,1). 10. I(\/I—x2+\/l+x2]dx on (-1, 1).

M:neZ}.

. 2
S Y gy on IcR\ {2nt)n:neZ}.

185
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II. Evaluatethe following integrals.

3 2 1
1. |[a-x**4d ~1 1). 2. || —=-=+—]dx on (0, ).
fa-x*?ax on (-1 1) I(J; - 3x2j (0, %)
2
1 2
3. j(*/;Jr J dx on (0, ). 4. [CD g vercr N 103,
X 2x
2
2x-1 1 2 3
5. dx on (0, ). 6. —+—————{dx on (1, ).
f(sﬁ) | ey
nmo . )
7. f(seczx—cosx+x2)dx,ercR N {721118 anoddlnteger}.

X

nmo . .
8. I secxtanx+§—4) dx, xeIcR \ ({TZHIS anoddmteger}u{o}j.

Ji-—2 2) dx on (0, ).

1-x

de, xeR.

4
Vat +1

de, xeR.

]
10. J. x> —cosx+
]

11.

cosh x +

1
VxZ+1

1
12. | sinhx+————| dr, xelc (-eo,~1)U(lc0).
(x* =12

X _ 1,X)\2
13. J"% dx, (a>0,a#1 andb>0, b#1) onR.
a

T
14. fseczx cosec’x dx on I C R\( {m‘t :neZ }U {(2”"'1) 3 -ne ZH

2
5. dex onl c R\ {nm: neZl.
1—cos2x
16. I\/I—COSZX dx onl C [2nmt,(2n+ 1)), n€ Z.
1
7. | dx on R.

cosh x +sinh x

18, | L i onlc RN {@ntlyn : nez).
1+cosx



6.2 Method of substitution - Integration of algebraic, exponential, logarithmic,
trigonometric and inverse trigonometric functions - Integration by parts

This section is divided into the following two subsections, namely

6.2(A) Integration by the method of substitution - Integration of algebraic and
trigonometric functions
and
6.2(B) Integration by parts - Integration of exponential, logarithmic and inverse
trigonometric functions

In section 6.2(A), we discuss the integration by the method of substitution. In section 6.2(B), we
describe one more useful method of integration called ‘integration by parts’ for integrating a product of
functions. In the sequel, we evaluate the integrals of the form

1 dx
——dx, | —, |4 >+b dx,
jax2+bx+c X j PENT _[ ax” +bx+c dx
J.L-I_qu, _[(px+q)\/ax2+bx+c dx,

ax> +bx+c

_[ px+q d _[ dx _[ 1 e
Ja +bx+c  ° (@x+bnpx+q *atbeosx

J~ 1 dx"[acosx+bsinx+cdx.

a+bsinx dcosx+esinx+ f

6.2(A) Integration by the method of substitution - Integration of algebraic and
trigonometric functions

In this section, we reduce certain integrals to some standard forms by using a suitable substitution.
Here we discuss mainly the integration of algebraic, trigonometric functions and simple forms of
exponential functions and some functions which are combinations of these forms.

6.2.1 Theorem : Let f:1 —R have anintegral onl and F be a primitive of fonl. LetJ be an
interval in R and g : J — I be a differentiable function. Then (fog) g’ has an integral on J, and
[ F(g(0) ¢'(x) dx = F(g(x)) +c.

e, [few) g ax=|[rwa]

r=g(x)
Notation : If I f@®)dt = F(t) +c, then [[ f@) dt]
g(x).

e, |Jrod] ey = [FO+E] ) =Fg(+e

et denotes the value of F(7) + ¢ evaluated at
=g(x
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Proof of the theorem : Since F is a primitive of fon I, we have F'(¢) = f(¢) forall #in I. We have
(Fog)' =(Fog) &' =(fog) g"
Hence (fog) g’ has an integral on J and

[ f(gx) g'(x)dx = [[(fog)g'] (x) dx = (Fog) (x)+c
=F(g(x)) + c.
6.2.2 Remark
Sometimes when we are given a function 4 and asked to find fh(x) dx, it might be possible to
find easily a differentiable function g and a function f such that _[ f(@)dt can be easily found and
f(g(x)) g" (x)=h(x) for all x. In such a case, we evaluate _f f(#)dt. The substitution 7= g(x) so obtained

yields _[h(x) dx. Evaluation of integrals in this way is known as ‘the method of substitution’.

6.2.3 Example : Let us now evaluate I2xcos(1+x2)dx. Let 1= [1, o). We define f/ : TR by
fix)=cosx. Let ] =R. Define gon J by g(x)=1+x% Then, g is differentiable on J, g(J) C I and
f(g(x)) g’ (x) =2xcos (1 +x?) forall xinJ. Clearly f has an integral on I and
[ f@)dt = [cost dt =sin t+c.

Hence by Theorem 6.2.1, we have
2x cos (1+x?) dx = t)dt
Jareos ey av=[ [roar]
= (Sint+c¢),_1, 2
=sin (1 +x¥) +ec.

6.2.4 Note
In Example 6.2.3 we specifically mentioned the intervals I, J and the functions f, g to illustrate

Theorem 6.2.1. Generally, the intervals I and J are not explicitly specified and can be taken suitably.

The general practice is to guess an appropriate function g to make the substitution # = g(x) and

dt = 8/(x) dx in the given integral so that it reduces to [ _[f (t)dt ] r=g(x) It is customary to write

J. flg(x) g’ (x)dx = J. f(t) dt with the understanding that in the later integral 7 is to be replaced by

g(x) after evaluation.

6.2.5 Example

X

e 1
Let us now evaluate J ——dx . Here we suppose that f(?) =7 t€ (1, *); we define

e +1
g:R —-Rbyg(x)=e"+1. Then



X
e

f(g(x) g'(x) =—
e +1
Put #=g(x)=e*+ 1. Then df =" dx.

X
e

dx

1
Therefore j U—dt} =[logt+c],_ g
! t=e"+1
= log(e*+ 1) +c.
6.2.6 Corollary : Let f:1 — R have an integral on I and F be a primitive of f.
Let a, be R with a+0. Then

e’ +1

[ flax+b)dx = lP(ax+b)+c
a

forall x € J, whereJ = {x € R :ax + b € I} and c is an integration constant.
Proof : Follows from Theorem 6.2.1 by substituting g(x) = ax + b.
6.2.7 Example

Let us evaluate f dxonaninterval Jc R\ {—2} with a,b € R, a+0.

ax+b a

Let I={ax+b:x€l)} sothat0 ¢ Iand I is an interval. We define /:[— R by f(t)=l

t
so that F(f)=1log|¢|+ conl. Hence by Corollary 6.2.6, we have

1
dx ==
Iax+b a10g|ax+b|+c onJ.

6.2.8 Some Important Formulae

The following formulae can be obtained by using some of the standard integrals given in 6.1.9
and Corollary 6.2.6.

1
1. J.e“xdx =—e®+c,a#0, onR.
a

1
2. jsin(ax+b)dx = —=cos (ax+b)+c, a#0, on R.
a

3. Icos(ax+b)dx = lsin(ax+b)+c, a#0, onR.
a
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4. jsecz(ax+b)dx=l tan (ax+b)+c, a 0,
a
2n+Dr 1
mrcnn] [E205] e )
a
5. fcosecz(ax+b) dx = —lcot(ax+b)+c, az0,
a
1
onl c R\ {;(nn—b) ‘ne Z}.
6. J.cosec(ax+b) cot(ax+b)dx = —lcosec(ax+b)+c, a#0
a
1
onl c R\ {;(”ﬂ—b) ‘ne Z}.
7. jsec(ax+b)tan(ax+b)dx=lsec(ax+b)+c,a¢0
a

onICR\{ [@ b}:nel},

Let us now write integrals of functions of particular form by using the method of substitution.
6.2.9 Theorem : Let f: I— R be a differentiable function. Then the following statements are true.

[ dx =log| f(x)|+c onl.
(x)

(1) If f is never zero on I then I

has an integral on I and _f

(ii) Ifais apositive integer orif o€ R\ {~1} and f(x)>0Y x € 1, then f* 1’ has an integral on 1

(fon™t
d = -
and [ (f(x) f'(x)dx = “orp TEO* 1.
In 1 S
particular, when o, = ——, we have J. dx =2,/f(x) +c onl.

e

(iii) If'(ax+b)dx:lf(ax+b)+c, az0onJ={xeR:ax+bel}.
a
Proof

(i) Since the function ¢ given by ¢(¢) = 1 has log| 7| as primitive on any interval not containing the
t

origin, by Theorem 6.2.1 it follows that S has an integral on I and that

f(x) 1
J. (x) |:J.tdtj|t:f(x)



= [log|t|+c ]t=f(x)

= log| f(x)|+ec.
Thus (i) follows.
(i) Proofof (ii) follows like that of (i).
(i) Since f isaprimitiveof t”, by Corollary 6.2.6, clearly (iii) follows.

Note : While working out the problems we do not mention the intervals [ and J but make the substitution with
the tacit assumption that the substitutions are carried on relevant intervals.

6.2.10 Examples
Ox dx onany interval I € R\ _\/2, \/2 )
3x* =2 3°V3

We define f: IR by f(x)=3x?>-2. Then f'(x)=6x.

1. Example : Let us find J.

Hence [ 3xfx_ ~dx = jf; ((x)) —log | f(x)|+c (by Theorem 6.2.9(i))
= log|3x*-2|+c

(Sin™' x)*

Vi

2. Example : Let us evaluate dx onl=(-1,1).

We define /- 1—-R by f(x)=Sin"!x. Then f’'(x)= ! =
1-x
1
Hence Bin_ x) 0’ = J.( Fx))* f(x)dx
V1-x?
3
= (]C(Tx))+ ¢ (by Theorem 6.2.9(i1))
N
_ (Sin™" x) te
3
1
3. Example : Let us evaluate _[—2 dx onR.
1+(2x+1)
, 1
We define /- R—>R by f(x)=Tan"'x. Then f'(x)= e
X

Now ,‘-m dx = .[f’(2X+1) dx = %f(2x+l)+c (by Theorem 6.2.9(iii))

=%Tan_l QCx+D+c.
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6.2.11 Evaluation of integrals of trigonometric functions;
tan x, cot x, sec x and cosec x

Qn+Dm
1. Letus show that 'ftan x dx =log|secx|+c,xe I CR\ Y inely,

sin x

J.tan xdx = J- dx.

COoS x
£
£

Let Ax)=cosx. Then /(x)=—sinx, and therefore —tan x =

sinx ¢ _ @), X
Hence '[cos . dx = _[( o) j dx j ) dx+c (by Theorem 6.1.10(b))

= —log|f(x)|+c (by Theorem 6.2.9(ii))
= —log|cosx|+c = log|secx|+c.

ftan x dx can also be evaluated in the following way.

sec x tan x
[rertny

Itan xdx =
sec x

= log|sec x| + ¢ (by Theorem 6.2.9(1)).

2. Letus show that _[cotxdx =log|sinx|+c,xe [CR\ {nn:ne Z}.

COS X

Icot xdx= _[ dx =log [sinx|+ ¢. (by Theorem 6.2.9(i))

sin x
3. Let us show that

arein )

fsec x dx =log |secx +tan x|+ ¢, x€  CR\ { >

= log |tan Ty | +c
s 42 '

sec x (sec x+tan x) d
x

Jsec X v = '[ (sec x+ tan x)

Let f(x) =secx+tanx. Then f’(x) = sec x(sec x + tan x).
Hence ~l‘sec xdx = I%dx = log| f(x)|+c (by Theorem 6.2.9(i))
X

= log|secx +tanx|+c

= log |tan Ty | +c
g 4 2 '



4. Let us show that

jcosecxdx=log|cosec x—cot x| +c
:10g|tan§|+c for xe ICRN\ {nn:ne€ Z}.

cosec x(cosec x—cot x)

cosec x dx =
'[ '[ (cosec x—cot x)

= log |cosec x — cot x| + c.
X
:log|tan5|+c.

Observation : By substituting %—x for x in (1) and (3) and using Corollary 6.2.6, we get the

integrals (2) and (4) respectively.

6.2.12 Solved Problems

5
X

1+x

dx onR.

1. Problem : Evaluate J. 5

Solution : We define f: R—>R by f(t) = and g : R—>R by g(x) =x% Then g(x) = 6x°.

1+1°
Define F: R—R by F(f)=Tan™! #. Now F is a primitive of 1.
5
X 1
H dx = — X)) g’(x)dx
ence I1+x12 6_[f(8( ) &'(x)
1
= g (F(t)+c)t=g(x)
_ 1 -1
= g (Tan “7+c¢),_ o
1 _
= — Tan %% +c.
6

2. Problem : Evaluate J.cos3 xsinx dx on R.

Solution : We define f/: R—R by f(x)=cosx. Then f'(x) = —sinx.

[(F @) (= (x)) dx

Hence .[cos3 Xx sin xdx

~[(F @) £ ax

4
= — (f(:)) + ¢ (by Theorem 6.2.9(ii))

COS4 X
4
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1 (x+)
3. Problem : Find I(l——zj e " dx on 1 where I =(0, ).
x

Solution : Let J=1=(0, ). Define f:I—-R by f(r) =¢'; andg:J] — Rby g(x)=x+l. Then
X

g cl, gk —1—L Now by Theorem 6.2.1, it follows that
x?
1
1 (x+—) , _ _ ¢
I(l——z)e X dx = ff(g(x))g x)dx = [If(f) dt l: w0 ['[e dt :|t=g(x)

X 8

t
=\ e +c} 1
[ ,=x+l = ex+x +c.
X

4. Problem : Evaluate ! dx on 1=(0,1).

J JSinx y1-

Solution : We define f: 1—-Rby f(x)=Sin"'x. Then f'(x)=

1—x

Now I I f’ (X)

\/f(x

= 2\ f(x)+c¢ (by Theorem 6.2.9(i1))
= 2/Sin”" x+c.

. 4
5. Problem : Evaluate J. sm6x dx, Xx€ I CR\ {w ‘ne Z}.

1
VSinTlx V1= x?

COS X

. 4

. sin” x

Solution : I - dx = Jtan4x sec? x dx.
CcOoS X

We define f: I—>R by f(x) =tanx. Then f’(x) =sec” x.

Therefore

J‘sinzx dr = I[f(x)]4 F(x)dx = [f( )] UMT L . (by Theorem 6.2.9(ii))
cos’ x

— tan5 xX+c.

6. Problem: Evaluate _[sin2 xdx onR.

1—cos2x
l 1 . 102 = _— dx
Solution fsm xdx J.( > )



1 1
5 Idx —5 _[cos2x dx + ¢

1 1 .
= —x——sin2x+c
2 4

(since Icos 2x dx = % sin2x+c¢ by Theorem 6.2.9 (iii)).

1
7. Problem : Evaluate J. T dx where a,b € R and a*+ b*> # 0 on R.
asinx COS X

Solution : We can find real numbers » and 6 such that » >0, a=r cos 8 and 5 = r sin 8. Then
r= m; cosf = and sinG:%
r
Wehave a sinx+bcosx = rcosOsinx+rsinfcosx = rsin (x + 0).
dx

Hence _[ = l_[;
asinx+bcosx r*Ysin(x+0)

= l J.cosec (x+0) dx
R

1 log | tan (% (x+6)) |+ ¢ (by 6.2.11(4))
.

1 1

= ———log|tan — (x+0) |+ c,
Ja® +b* 2

for all x € I, where I is an interval disjoint with {nt -0 :n € Z}.

2
X

8. Problem : Find _[ dx on (=5, =)
x+5
Solution : Put r=x+ 5sothat7>0on (-5, o). Then dt=dxandx=1¢->5.
2 2 2
) t~—10r+ 25
Now * dx = (t—dt: —F—dt
J == [T a=]—3
3 -1
= .[’2 dt —10 _[\/; dt +25_[t 2dt +c¢
5 3
= gt2—§t2+50\/;+c
5 3
5 3
= %(x+5)2—?(x+5)2 +50vx+5 +c.

6.2.13 Theorem (Integration by the method of substitution - continued) : Let J be an interval
and ¢ : J — I(CR) be a bijective differentiable function such that © ' is differentiable on I. Let

f:I—=R besuchthat (fo ¢)¢ has a primitive Fon I. Then f has an integral on I and

[ = B lonre = [roumgwa] .
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Proof: We have ((00(0_1) (x) =x forall x in I.
Since @ and ¢! are differentiable in their domains, from the above equation, we have

@0 (x) (971Y (x)=1 forall x in 1.

Hence ¢~ !is never zero on J and

1
(@) (x) = ————
? Y e ) (1)

for all x in I. We have (Focp_1 Y = (F’O(p_l) ((P_l)'-

Hence (Fog ' Y(x) = F(¢7'(x)) (971 (x)
F(o'(x)
= —r 2 (by(l)) -(2)
o)

Since F is a primitive of (f09)9’, we have F' =(fo @)¢'.
Hence F'(r)= f(e(t)) ¢’(t) for t€ J.
Therefore F(¢™'(x)) = f (@@~ () /(¢ (x))

= f () ¢'(¢ ().

Fo'() _
¢ (@' (%)

Therefore, by (2), (Foo™ ') (x) = Ax).

().

Hence

Hence j F(x)dx = F(o ' (x)+c.
6.2.14 Remark

If J is a closed bounded interval, ¢ :J — I (CR)is a bijective differentiable function and ¢’
is never zero on J then it can be shown that ¢! is differentiable on 1.

6.2.15 Example

2 2
Let us evaluate J. al > dx on(—1,1). Let I=(-1,1)and f(x)= : forallxinI. Let
1-x I-x
J =(_§, g] Define @ :J — Iby ¢ (0)=sin0. Then @ is a bijective function from J to I. Further,

@ and @' are differentiable on their respective domains. We have

sin’ 0 sin’ 0
-cosO =

f(9(0) ¢'(6) = ﬁ cos0
—sin

- cos® = sin’ 0.




We have Jsinz 0do = % [9 _ smj@}_c
= % [0 —sin® cos®]+c, where ¢ is a constant.

We have ¢ (x) =Sin~! x forall xin (=1, 1). When 6=Sin!x, we have cos® = V1-x* forallx
€ (-1,1).

1 )
Hence .[ f(x) dx 5 [9 —sin O cos e]e:sm*x +c

[ Sin_lx—xxll—x2 }+c-

1
2
6.2.16 Remark

Sometimes when we are given a function fand asked to find I f(x)dx, it might be possible to
find a one-to-one differentiable function @ on an interval J such that the range of @ is the domain of

JA ¢! is differentiable and f f(@@)) @ (¢) dt canbe easily evaluated. In such a case, the later integral
is evaluated and in the value so obtained, on replacing 7 with 0 (x) , wWe obtain I f(x)dx.

To evaluate f f (x)dx using Theorem 6.2.13, it is customary to make the substitution x = @ (¢)

and dx = @' () dt and write
[fyde = [ fo@) ¢'(2) dt

with the understanding that 7 is to be replaced by @' (x) after evaluating the later integral.

In order to be able to use Theorem 6.2.13, one should be in a position to guess an appropriate
substitution @ () for x and have a clear idea about the domain of the given integrand and also the
domain of the function @, so that all the conditions of Theorem 6.2.13 are fulfilled.

For example, when /1 — 42 occurs in the denominator of the integrand, the substitution x = sin 0
must be useful. Since 1 —x? is greater than zero for | x | < 1 and —x*> < 0 for | x | > 1, the domain of the
integrand must be a subset of (-1, 1). Ifitis (=1, 1), we have to restrict 6 to the interval (—g, gj SO
that the sine function is a bijective map to (=1, 1).

6.2.17 Solved Problems

X

J1-x

Solution: We define f:1 — R by f(x)=

1. Problem : Find _[

dx, xe1=1(0,1).

X s

. Let J=]0,—|. Define :J—>1b
V1=-x 2 ® Y
@ (0) =sin? 0. Then @ is a bijective mapping from J to I. Further, ¢ and ¢ ! are differentiable on
their respective domains. Put x= @ (0)=sin?0. Then dx =2 sin 0 cos 6 db.
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.2
X sin“ 0
Therefore ——dx = | ———-25sin0 cos 6 dO
’[vl—x \/1—sin26

.2

= J.Sln 0 2 sin0 cos 0 dO = .[2 sin® 0 4o
cos0

= 2.[%(3 sin0-sin30)d0 (. sin30=3sin 0 —4sin’ 0)

1
2 [E (cos30-9 cose)} +c (. cos30=4cos’0—3cos0)

l[4 cos’0—-3cos0-9 cosﬁ] +c
6

%[4 cos> 012 cose] +c

3
= %cos36—2 cosO +c¢ = %(l—x)2—2 I-x+c.
dx
2. Problem : Evaluate | ——————= on (-4, «).
J.(x+5) Vx+4

dx
Solution: Let 1= (-4, ). Define fonlas f(x) = ——F———.
(4 =) Sonlas JOO= 05 Jrva

LetJ=(0, o). Wedefine @ :J — Iby @ (t) =2 —4. Then ¢ is differentiable and is a bijection. Now
putx= @ ()= *—4. Thent=+/x+4 . Hence dx =2t d.

dx 2t 2
Thus |[——_  =|—=" _aqr = dr = 2 Tan 't +c.
j(x+5) Jx+4 I(t2+1)t It2+1
=2 Tan ' (Wx+4)+c.

6.2.18 Evaluation of integrals of algebraic functions of special forms
In the following integrals, a is a positive real number.

1 1 _

5 2aixz—Tanlf+c on R.

X +a a a

1. Let us show that J.

1 1 1
J.z 2al)c=—2~|.—2dx+c
a 1+(%)

1 _
= — .aTan l(ﬁj + ¢ (by Corollary 6.2.6)
a

a
= l Tan_l[ﬁ) + c.
a a

We can also evaluate the same integral by putting x =atan 6.



X—a

1 1
dx = — 1o
x> —a? 2a .

1 _L 1 B 1
x> —a’ 2a | x—a x+a |

Hence J 1 dx = 1[.[ ! dx—_[ ! dx}+c

x> —a’ 2a |! x-a x+a

2. Let us show that J.

+ ¢ onany interval containing neither —a nor a.

x+a

+ c.

1 1 X
- llog|x—al - log| x+a] ] + ¢ = 5 log| ~—*

dx = sinh™! (£)+c on R.
a

3. Let us show that I%
a“+x
1 1 1
———dx = — | ——d
I\/azﬂcz ’ aj,/1+(§)2 )
1

-1 x o1 x
=~ .asinh™ | Z |+c = sinh ™ [ 2| +c.
a a a

1 x+Vx?+a?
Imdkﬁz 10g f + c.

(since a>0 and x++/x> +qa? is positive for all x in R, we need not write modulus for the expression

x+Vxi+a®

a

Also

).

We can also evaluate the same integral by using the method of substitution.

dx
For example, to evaluate | ————= on R, we substitute x = @ (0) =asinh 6, 6 € R.
P e 'O

Observe that in this example | = R and J = R, dx = a cosh 6 dB and

[ dx =j“C°Shede = [d8=0+c
Va2 +a? a cosh 6
o x x+vVxt+a®
= sinh ™| = |+¢ = log —a +c.
a

(OR)
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We substitute x = @(0)=atan 6 for Q¢ (—g, g] In this case, J = (—g, g) and 0:J—>Risa

bijection. @ and @~! are differentiable on their respective domains.

\/x2+a2 = \/a2 tan’0+a> = a sec 0;
dx = asec?0 do.

asec’ 0

dx
Therefore f N - .[ a sec 0

= log |sec O + tan 0| +c¢

do = [sec 6 dO

.1 X
=Sin™' =+c¢ for x € (=a, a).
a

4. Let us show that _“L

. Ja? = x*
jLzlew e

[2 _ 32 a /1_(%)2 = Sin (;j+c.

can also be evaluated by substituting x=a sin 0, 0 € (—g, g)

dx
Here we note that | ——
J. Ja* - x?

dx
5. Let us evaluate Jﬁ on I, where 1= (a, ) or (=, —a).

IL _dax
/xz_az a (%)2_1

cosh™ (£J+c on (a, o)
a

—cosh™ (—£j+c on (—eo, —a)

a
x+vxt-d?
log| ——— |+c on (a, )
a

a

_ [2_ 2
~log M}_c on (—co, —a) . (from 6.1.9 (21))



Alternative method : The function __t is defined on (—eo, —a) U (a, ), a > 0. We can evaluate

2 2
X —a

the integral on an interval [ only when I C (—o0, —a) U (a, <0).

Let Tc (a,o),put x=@(0)=acoshB, 6€ (0, ).
Then ¢ : (0, =) — (a, =) isabijective function, @ and ¢! are differentiable,
dx =asinh 0 dB and

\/x2 —a’ = \/a2 cosh’0—a° = a\/coshzﬁ—l = ¢ sinh 0.

a sinh O

J ==
x2—q? a sinh 0

Now let T C (—o0, —a).

X

j +c on (a, o).

Hence

de = jde=e+c - cosh_l(

a

On substituting x =-y, y € (a, « ), we observe that

j dx J. dy

We know from hyperbolic functions (Intermediate Mathematics - I(A) Text Book) that
cosh™x = 10g(x+\/x2 —1) if x>1.

Hence for x > a we have

[2 [2 =2
cosh1(£]=log{£+ x_2_1] =log[u]
a a \a a :

If x <—a then —£>1.
a

= —cosh_l(—§)+c on (=, —a).

Hence

2
coshl(—f):log(—fﬂfx—z—l]
a a \a
- log —x+Vx*-a’ __log(—x—\/xz—azl

a a

Thus it follows that

log| 22X =% i if 1 (a,0)

log —]+c if 1C (=o0,—a)"
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dx :ln|x+\/x2—a2|
Vx? —a? a

2
6. Let us show that f a’*—x*dx = % Sin™" £+§\/a2 —x* +c¢ on (-a,a).
a

Hence , j

+c¢ on I CR\ [—a,d].

Put x = asin0 for O e (—g, g) then dx=a cos 6 db.

Hence f a’—x* dx = f\/az—azsinze .acos 9 do

1+ 20
= a’ fcosze o = d’ I%d@
2 2 :
a a sin 20
= — =—10+ +
5 [ [d0+[cos20d0 ] +c 5 { 5 } c
a2
= [0 + sinB cosO]+ ¢
2 2
< {Sinlf 2 1x_2] >
2 a a a
2
=L gin' 4L Va*-x* +ec.
2 a 2
Note : This integral J\/a2 —x?dx can also be evaluated by using the formula for integration by parts (see
6.2.26(1)).
7. Let us show that
[2 2
J. X% —atdx = X T4 4 cosh™! £+c on [a, o).

2 2 a
put x =acosh@ for0 € [0, ). Then dx = asinh 6 dd

and \/xz—a2 :\/a2 cosh?0 — a®> = g sinh 0.

j x2—a? dx = jasinhe.asinhede = a° J.sinhze.de

— 2 1
az.[ cosh20—-1 0 = & sinh 29_6 te
2 2 2

2
= % [sinh 6 cosh 6-0]+c¢

2

= % [\/cosh2 0—1. cosh 6—6}+c



Integration

(Also see 6.2.26(2)).

Similarly, it can be shown that

)C\/)Cz —a2

'[ xt—aldx = >

2
+a?cosh_1 (—1) + ¢ on (—o0, —a) by substituting
a

x=-acosh 0, 6€ [0, o).
8. Let us show that

[2, 2 2
xNa " +x° a1 X
I\/a2+x2dx =" = 4+~ sinh'=+c onR.

2 2 a
The given integral can be evaluated by substituting x =a sinh 6, 6€ R or by substituting
T T
x=atanO, O¢ [_5’ E) (Also, see 6.2.26(3)).

6.2.19 Solved Problems

4 3 3

Solution :

J' dx _ J‘ dx .
V4-9x2 {22 = (3x)*

Put x=(p(6)=§sin6 for 96(—%,%]. Then dx=§cos€) do .

J~ 2cos0 db _J-gcose
\/4—9.§sin26_ 2cos §

ljde T [l I
3 3 3 2

do

dx
Hence J. \/ 4_0y2

dx for x € 1=(-a, a).

2 2

2. Problem : Evaluate f
a —x

1 1 1 1 1
. R = = — + .
Solution : We have - (a-x)(a+x) Za(a—x a+x)
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Hence J. 21 sdx = i[". I dx+‘[aixdx}+c

a —x a—x
1
= —[-logla-x|+log|la+x| |+¢
2a
1 a+x
= — log + c.
2a a—x
3. Problem : Evaluatej~ >dx onR
1+4x
Solution : .[ sdx = IJ‘ZZ—X
1+4x l 1) 42
1 2 2
=2 n! 2x]+c (by 6.2.18(1))
= % Tan™" (2x) + c.

dx on(-2,2).

1
4. Problem : Find
. - 1 l(x)
Solution : ——dx = dx = Sin"'| —|+c.
J=v=lm— ﬁ

5. Problem : Evaluate I 4x> +9 dx on R.

2
Solution : J}/4x2 +9 dx = ZI x? +(%j dx

NG R S SR
— 2[ 22 + 22 sinh™ (—; T C (by 6.2.18(8))

= %x\/4x2 +9 +% sinh ™! [2—3 +c.

3

Solution: _[\/9)( 25 dx = 3J‘1fx - % dx

5
6. Problem : Evaluate f 9x> =25 dx on |:—’ °°j.



Integration

=3

2 512 5+2
XAx" =) 2)
5 37 23 cosh1£x

= l x\/9x2 =25 —é cosh ™! 3_x +c.
2 6 5
7. Problem : Evaluate .[\/16—25)62 dx on (—%, ij

5
Solution : J‘\/16—25x2 dx = 5_|. /(%Y—xz dx
2 2
/(ﬂ} u_}
5 2 )
1

% J16—25x> +§ Sin™ (%}+c.

I
W
1
N | =

Il
[N

Exercise 6(b)

I. Evaluate the following integrals.

1. fezx dx, xe R. 2. fsin7xdx,xe R.
3. Y v, xeR 4. [2xsin(x® +1) dv, xe R.
1+x%
2 Tan™'x
5. I(log_x)dxon(o,oo). 6. [S—dr on (0, )
X X
. -1
7. [T ) ver 8. [——dx on R
1+ x2 8+2x
3x? 2
9. dx on R. 10. | —=—=—==dx on R.
I1+x6 I\/25+9x2

11

. J.;dx on (l,ooj.
\V9x* -1 3

@J T (by 6.2.18(7))

205
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12.

13.

14.

15.

J

sin(a+ x)

sin x

Mathematics - IIB

fsin mx cosnxdx on R, m# n, m andnarepositive integers.
fsin mx sinnxdx on R, m# n, mandnarepositive integers.

~I.cosmx cosnxdx on R, m# n, mandnarepositive integers.

Isin x sin2x sin3xdx on R.

dxonICc R\ {nn—a:nelZl}.

II. Evaluate the following integrals.

1 o) 1 3
—7)2 z dx on ICR -z
L [Gx-2)? on (3, ) 2 [ \{ 7}.
3. jk’g(l—”)dx on (=1, o) 4. [(3¥*—4xdx on R.
1+x
5. f x 1 oon (_l,wj 6. j(1—2x3)x2 dx on R.
N1+5x 5
2
7. I%dx onlc R\ {nn —E:neZ}.
(1+ tan x) 4
8. Ix3 sinx* dx on R.
COS X
J+2 dx on ICR\ Jonm +°%:nez!.
(I+sin x) 2
10. J.?/sinx cos x dx on R.
5 log x
1. [2x ¢ dx on R. 12. [“—dx on (0, ).
X
13 LN on (—1,1) 4 [2x
) m > 1). . J.1+x8 dx on R.
8
15. J.1+x18dx on R.
e"(1+x) x
16. J.Z—dx on IcR N\ {xeR:cos(xe’)=0}.
cos“(x e")
2
17. J. cosee X dc on TcRN\{xeR:a+bcot x=0}, where a,b€ R, b #0.

(a+bcotx)’



Integration

18. jex sin e dx on R.
20.

22.

\®)

24.

25.

26.

28.

30.

31.

32.

33.

3

~

3

9]

36

J

bx" +c

19. I—Sin (log ) dx on (0, o).
x

j dx on (1,). 21. J‘mdx on (e, ©), n#—1.

x log x X
| 05 1022 1 on (0, o0). 23. [ e on (0, ).

x Jx
2x+1

sz—+dx on R.

X +x+1

axn—l

dx, wheren € N, a, b, ¢ are real numbers, b0 and

erc{xeR:x”;t—% .

J

1

dx on I c (1, 0)—{e}.
J’xlogx[log(logx)] * (1, ) = {e} 27. jcothxdx on R.
11 dx
dx on (——,—j, 29 [ . R.
/ 1-4x 272 Im
1
—————=dx on (-2, ).
‘[(x+3)\/x+2 ( )
j.— dx on [c R\ {E+(_])"£:n eZ}.
1+sin2x 2 4
2
jx4+1 dx on R.
x +1
dx \

cos> x +sin 2x

on I cR\ ({(2n+l)g in EZ} U {mt—Tan_l [%}n EZ}J .

. |vV1=sin2x dx on I 21175—3—71,2n7t+E ,nel
4 4

. J.\/l+cos2x dx on Ic{2nn—g, 2nn+g}, nel

|

cosx+sinx

V1+sin2x

dx on I [Znn—%, 2nm +3Tnj’ nel.

207
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- R.if |a|>|b
37. j—smzx dx o { |a|>1b]

(a+bcosx)’ Ic{xe R:a+bcosx#0},if |a|<|b|-

38. j seex dx on ICR \ {(2n+1)§:neZ }

(secx+tanx)2
dx
onR, a#0,b#0.
39. Iazsinzx+bzcoszx
dx
40. |- : onl CR \ ({a+nm:ne ZYU{b+nm:ne Z}).
sin(x —a)sin(x —b)
2n+D)m 2n+D)m
41. I ! dxonIcR\({a+g:n€Z}u{b+L:n
cos(x —a)cos(x—b) 2

IIL. Evaluate the following integrals.

sin 2x
L. f 2 —— dx on ICR \ {xeR|acos’x+bsin*x=0}.
a cos” x+ bsin” x

_ T
2. J.ltﬂ dx for xelIc R\ {nt——:neZ}.
1+tan x 4
cot (log x) nm
3. [E2 dx, xelc (0. w)\ (€™ ineZ ).
X
4, Iex cot e’ dx, xe ICR \ {log nm:ne N}.
2 k+Dm
5. _[sec (tanx) sec” x dx, on Ic{xeE:tan x iT for any k€ Z },
where E =R\ {(2’1% ‘ne Z}.
6. J.\/sin x cosx dx on [2nm, 2n+1)7t], (n€Z).
2n+ D
7. J.tan4x sec? x dx, x eICcR \{ % :nel }.
2x+3
8. | =—==dx, xelcR \ [4,1].
J.\/)cz+3x—4
9.

fcosecz X iJcot x dx on [0, g}

eZ}.



10. J.sec x log(sec x +tan x) dx on (O, g) .

11. IsinS x dx on R, 12. ICOSS x dx on R.
13. Icos x cos 2x dxon R. 14. Icos x cos 3x dx on R.
3
15. J.cos4 x dx on R. 16. va4x+3 dx on (—Z,“)-
17 on {x eR :|b+cx|< a},wherea,b,carerealnumbersc # 0and a>0.

. J- dx
\/a2 —(b+cx)?

dx
18. Jﬁ on R where a, b, carerealnumbers, c# 0anda>0.
a” +(b+cx)

9. j ax . xeR.
1+¢*

2
X

20. f—2 dx, xe ICcR\ {_ﬁ}, where a, b are real numbers, b # 0.
(a+bx) b

21 dx, x € (—oo,1).

2
X
. ‘[ V1-x
6.2(B) Integration by parts - Integration of exponential, logarithmic and inverse

trigonometric functions

In section 6.2(A), we discussed mainly the integration of algebraic and trigonometric functions
by the method of substitution. In this section, while continuing the discussion of the integration of
algebraic and trigonometric functions, we discuss integration of exponential, logarithmic and inverse
trigonometric functions and some functions obtained as combinations of these.

6.2.20 Theorem : Let u, v be real valued differentiable functions on I. Suppose that u’v has an
integral on I. ThenuVv’ has an integral on I and

[@) () dx = @) (0 - [ @) dr+c (1)

where c is a constant.

Proof : From the product rule for differentiation of two functions, we know that uv is differentiable in

I and that (uv) = u'v+u'.

Then  w/' = (uv) —u'v. .. (2)
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Since (uv)” has an integral, namely, zv on I and by hypothesis, u’v has an integral on I, from equation

(2) it follows that uv” has an integral on I, and
[@v') (x) dx = [(uv) (x) dx—[@Vv)(x) dx+c

= (uv) (x) — f(u'v)(x) dx+c
for some constant c.

6.2.21 Note

1. Formula (1) is known as the ‘formula for integration by parts’. It is customary to write it in the
form

judv = uv—fvdu

by absorbing the constant ¢ in the integral on the R.H.S. Here fu dv stands for

Iu (x) (%j (x) dx, jvdu for J.v(x) (%) (x) dx and uv for u(x) v(x).

2. Sometimes fora given functionf, it might be possible to find differentiable functions # and v such
that /=uv" and u’v has an integral and Iu'v can easily be evaluated. In such a case, integration
by parts might be convenient. Sometimes it may be necessary to use the formula more than once

for evaluating a given integral.

6.2.22 Integration of exponential functions

We know that fex dx = €* +c¢, caconstant (see 6.1.9(4)).

1. Letusevaluate .[xex dx onR.

We take u(x)=x and v(x)=e". We have u’(x)=1.
Now, by the formula for integration by parts, we have

Ixex dx = _[u(x) V(xX)dx = u(x) v(x) — ju'(x) v(x)dx

=xex—J.exdx=xex—ex+c = (x-1)e+e.

2
X
Observation: In the evaluation of jxexdx, suppose we choose u(x) = ¢* and v(x) = — so that

Vv (x)=x and u(x)v' (x) =xe°. Now, with this choice of u and v, the formula for integration by
parts leads us to
x%e” _

2

xe* dx = ﬁex dx.
] I5



2
The evaluation of j%ex dx is lengthy. Thus the present selection of # and v has led us to a more

complicated integral. Hence a judicious choice of # and v is essential to use the formula for integration

by parts, for the evaluation of a given integral.

2. Let us show that, for a given differentiable function f'on I,
[e* Lf+ /(1 dx =e* f)+e. (A

For this purpose, since
[e* fOI =e" f/(x) + e f(0).
=" [f(0)+ (0],

we have by the definition of the indefinite integral, it follows that
Iex[f(x)+f'(x)] dx=e" f(x)+c.

Formula(A) is useful in evaluating integrals of the form J.ex g(x) dx when g is of the form f + £’ for
some differentiable function f.
1+ x)
(2+x)*
I+x _@Q+0-1_ 1 1
Q+x)?  Q+x)>  2+x (2+x)]

Example : Let us find '[ex dx on TC R\ {-2}.

We have

1 , 1
so that (x)=- .
2+ x / 22+ )c)2

Hence rx _ 1 L f(x)+ f'(x) so that by formula (A), we have

2+x° 2+x (2+x)°

Define f(x) =

Je' (21 o =[G s

X

=e¢' f(x)+c = ¢
2+x

+c.

6.2.23 Integration of logarithmic functions
Here we evaluate flogx dx by using the formula for integration by parts.
We take u(x) = log x and v(x) =x. Then V' (x) = 1.

Hence Ilogxdx = _[u(x) V(x)dx = u(x) v(x) —Iu'(x) v(x) dx
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d
xlog x — | x-— (log x) dx
g f 2 og )

xlogx—jx-ldx
X

= xlogx—x+ec.
Example : Let us evaluate fx log x dx on (0, o).

2
We take u(x) = log xand v(x) = x? Then V' (x) = x.

Now on using the formula for integration by parts,

2 2

X 1 x
xlog xdx = —logx—|—-— dx
I £ 2 £ x 2

2 2

X X
= —logx—-—-—+c.

2 2 2

2
= x—logx —lx2+c.
2 4

6.2.24 Integration of inverse trigonometric functions

1. Let us show that
[Sin™ x dx = x Sin'x++1-x7 +¢ on (-1, 1).

We take u(x) = Sin™! x and v(x) = x. Then V' (x) = 1. Hence by the formula for integration by
parts, we have

J.Sin'1 xdx = _[u(x) V(x) dx = u(x) v(x) — Iu'(x) v(x) dx
= xSin"'x - [x % Sin! x) dx

X

1-x°
= xSin"'x +vVI-x*+c. (1)

2. We now evaluate _[Cos_lx dx on (=1, 1) by using (1).

= xSin"x - | dx

) _ T . -
Since Cos™'x = E—Sm 'x, we have

_[Cos‘lxdx = I(g—Sin'l xj dx



Ex - .[Sin_lx dx
2

gx — xSin'x —1-x* +¢ (by(1))
x Cos™'x —v1-x" +c. (2

3. We show that
ITan_lx dx = x Tan"' x— log V1+ x> +¢ onR.

We take u(x) = Tan"!x and v(x)=x. Then v'(x)=1.
Hence by the formula for integration by parts, we have
x

dx.
1+ x°

JTan_lxdx = xTan_lx—J

=x Tanlx—% log(1+x*)+c

= x Tan™ x— logV1+x” +c. -(3)

4.  We now evaluate _[Cot_1 x dx on R.
On using Cot™'x = g— Tan'x, and integrating both sides and using (3), we get
JCot_lxdx =X g—xTan_lx + logm+c_
= x Cot 'x+ logm +c ~(4)

5. Letus evaluate .|.Se(:_1 xdx on IC(—eo,—1)U(l,00).

Let x€Ic (1, ). Then
1

vx?i -1

= xSec'x—cosh™'x + ¢

_l.Sec_1 xdx =x Sec_lx—f

or
xSecx—log(x+vVx2 =D +c. (by6.2.18(5))
Let x € I c (-, —1). Then

1
Vx? =1

= x Sec”'x — cosh™ (=x)+¢

dx

J.Sec_1 xdx = xSec'x +J.



214 Mathematics - IIB

or
= x Sec”'x — log(—x+\x* =) +c (by 6.2.18(5))

Hence J-Sec_lx dx = xSec”'x —log(| x| +Vx*=1)+c on I € R\ [-1, 1].

6.  Similar to (5), it can be easily verified that, for x € I C (1, =),

J. Cosec ™ 'x dx x Cosec'x + cosh 'x+¢

or

= x Cosec'x +log (—x + NES -1) +c.
For x € I C (-0, —1),

1

I Cosec 'x dx = x Cosec lx + cosh_l(—x)+c

or
= x Cosec 'x +log (—x + Jxi-1) + e

Hence _[Cosec_lx dx = x Cosec”'x + log(| x| +Vx*=1)+c on I € R\ [-1, 1].

6.2.25 Solved Problems

1. Problem : Evaluate Ix Sin~'x dx on (-1, 1).

2
Solution : Let u(x)=Sin"'xand v(x) = % so that v'(x) =x. Then u(x)v’(x) =x Sin™! x. Eventhough
the domain of u is [—1, 1], the function u is differentiable only in (-1, 1). Hence the formula for

integration by parts can be used here in (-1, 1) only. From the same formula, we have
2 2
. - d . _
[xSinxdr = Sin™x. = - [Z- == (Sin ™) d
2 2 dx

2
X

1-x?

2

1
x—Sin_lx - —J. dx
2 2

2
%Sin_lx —% [Sinx—xV1-x*]+c. (from 6.2.15)

2. Problem : Evaluate Ixz cosx dx.

Solution : Let us take u(x) = x, v(x) = sin x so that v/(x)=cos x and u(x) v'(x) = x> cos x. By using

the formula for integration by parts, we have
'[x2 cosx dx = x*sin x — J.sinx (x*Y dx

= x’sinx — 2 J'x sinx dx+c;.



Again, by applying the formula for integration by parts to J‘x sinx dx, we get

fx sinx dx = —x cosx — f(—cosx) dx

—X COs X+ sinx +c,.

Hence .fxz cosx dx = x*sinx — 2(sinx — xcosx) +¢

= (x> -2)sinx+ 2x cosx +c.

In evaluating certain integrals by using the formula for integration by parts, more than once, we

come across the given integral with change of sign. This enables us to evaluate the given integral.

3. Problem : Evaluate Iex sinx dx onR.

Solution : Let A = Iex sinx dx . Then
A= fex (—cosx)” dx
= ¢* (-cosx) — .[(—cosx) (e") dx
= —¢" cosx + .[ex cosx dx +cj. . (1)
Now '[excosx dx = e sinx — Iexsinx dx +c,
=e‘sinx—A+c, ..(2)
From (1) and (2),
A=-¢e"cosx+efsinx—A+c +c,.
Hence 2A =é€X(sinx —cosx) + ¢, o,

1 : ¢ +c
Therefore A= 5 e’ (sinx—cosx)+c, where ¢=-1—2

) ) 1 )
ie., '[ex sinx dx = 5 e* (sin x— cosx)+c.
4. Problem : Find Ieax cos (bx+c) dx onR, where a, b, ¢ are real numbers, and b# 0.

Solution : Let A= J.eax cos (bx+c) dx . Then from the formula for integration by parts,
A= o™ sin(bx+c¢) | ja & sin (bx +c¢) I
b b

= %eax sin(bx +¢) —% J. e™ sin (bx +c)dx
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=leax sin (bx +¢) _a L —Cos (bx+c) ax| _€oS (bx+c) dx | +c;
b b b
1 a a’
= —e™ sin(bx +c) +—2€ * cos (bx+c)——A +0y.
b b b?
a’ a 1
Hence l+— |A = — e™cos (bx+c) +— e sin (bx+¢) +cy.
b? b? b
Therefore (a® +b*)A = a ¢* cos (bx+c) +b ¢™sin (bx+c) +c3.
Hence A= 26 5 [a cos (bx+c¢) +bsin (bx+c)] +k where g = 3 a constant.
a +b P ap?’

Note : In the problem (4) above, by taking ¢ =0, we get

ax

Ie“x cos bx dx = ——

% [a cos bx + b sin bx]+k.
a“ +b

-1 [1=-x
5. Problem :Evaluate'[ Tan ™! 1/— dx, on(-1,1).
I+x
Solution: Put x=cos 0, (6 € (0, )). Then dx=—sin 6 db, and

.20
I-x 1-cos© _ 2 sin

I+x l+cos®

0
= tan2 5 Hence
2 0052

J‘Tan_l‘/l_—x dx = J‘Tan_wtaan (—sin0) db
1+x 2

= - J.Tan_l(tangj (sin®) d6

2
0
2

—1jemnede
2

—% [0 (—cos 6)—f(—cose) do 1+

(on using the formula for integration by parts)

%[6 cosO— sin O]+c¢

% [x Cos™'x— v1-x*]+c.



6. Problem : Evaluate J.ex 1osinx dx on 1 c R\ {2nn:ne Z}.
1—cos x
. 1—-sinx I-sinx 1 2 X by
Solution : = = — cosec” ——cot—.
—COSX 5 .02 x 2 2 2
sin” —

X
Let f(x)=—cot 5 Then f’(x)= % cosec” =. Hence

X
2
Iex (l—smx) dx = Iex (l coseczi—cotij dx
1—-cosx 2 2 2
= [e" (f/(x) + f(x)) dx
= ¢* f(x) +c¢  (by6.2.22, formula (A))

X X
= —e cot — +c.
2

To evaluate some integrals, we use the method of substitution as well as the formula for integration
by parts.

7. Problem : Evaluate .|.Tan_1 12x2 dx on 1 ¢ R\ {-1, 1}.
-Xx
Solution : Let Tan"!x = 0. Then x =tan 0 and dx = sec? 0 do.
2 _ 20 o
1-x 1-tan“ 0
-1 2x
Hence Tan 5 =20+ nm,
1-x
0 if |x|<l
where n=4-1 if x>1
1 if x<-1.
We have 40 = ~dx and | +x2=1+tan?0 =sec? 0.
1+x
-1 2x -1 2x 2
Therefore [ Tan - |dx = | Tan S| A+ x?) —— dx
1—x 1—x 1+x

= [ (26+ nm) sec® 6 dO

2_[ 0 sec’ 0 dO +mt_[sec26d9+c

=2 [6 tan 6 — ftan 0 d@] + n7 tan O + ¢ (on integrating by parts)

2 [0 tan 0 + log [cos O | + nm tan6 + ¢
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(20 + nm) tan 6 + log cos’0 + ¢

x Tan™ ( 2x

2
—X

] - log (sec’0)+c

x Tan™ (12x2]_ log (1+x%)+c.
—Xx

x? exp {m Sin'x}

\/1—x2

(Here, for y € R, exp {y} stands for e).

8. Problem : Find _[ dx on (-1, 1), where m is a real number.

Solution : Let 7= Sin! x. Then x =sin ¢ and dx =dt for xe(-1,1).
1-x°
x? exp {m Sin™! x} (.2
Hence J. dx = _[em sin“t dt
V1- x?
1—
_ J-( cos2t) o g
2

_1L Iemtdt _ 1 Iem’ cos2t dt+c 1

=3 5 . (1)
Case(i): m=0

x? exp {m Sin~! x}

From (1), I \/172
- X

dx 2% J.dt - % fcosZt dt+c

sin 2¢
2

+c

N | =

13

2

1 .. . . 1

= —Sin" x — — sin 2(Sin" x) +c.
2 4

Case (ii): m # 0.

2 - -1 mt mt
S
J.x exp im Sin x}dx 1l 1 (; [mcos 2t +2sin2t] + ¢
(from (1) and Problem 6.2.25(4))

1 1 1

= —é" [—— 5 (mcos 2t+2sin2t)}+c1
2 m m-+4

= Lmsio L L s asin! )
2 m  m?+4

+ 2 sin 2(Sin™ x))}+ c,.



6.2.26 Evaluation of integrals of some special type of algebraic functions
(using the method of integration by parts)

1. Evaluation of j\/az —x* dx on(-a, a), where a> 0.

Let A= fVaz —x*.1 dx.
Then by the formula for integration by parts, we have
NP

2Va —x?
=xa’-x* J-a—x dx + a*

A— —

dx+c,

J' 1
[2_ 2

=x+a’-x* - f\/az—xz dx + a* Sin‘l[fj +t¢ (by 6.2.18(4))

a
=xva’-x* -A+d’ Sin_l{fj +c.
a
Hence 2A = x Va* —x* +d’ Sin_l(f] +¢.
a
Thus A = 2ya? =22 + 142 sin! (fj‘FC where ¢ =L,
2 2 a 2

2. Evaluation of foz —a* dx on (a, o), where a> 0.

Let A:j x> —a’.1 dx.

Then A

_J~ 2x v d
e T
IJ— IJ—
xNx*—a’ J\/x —a’® dx — a’cosh” ( )+c1
Hence A = l X \lxz—a2 —% a® cosh™! (£)+c where c:c—zl.
a

This integral is evaluated earlier by using the substitution x = a cosh 0 (see 6.2.18(7)).

dx+c
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3. Evaluation of J.\/a2+x2 dx on R, where a> 0.
Let AZJ. a’+x* dx.
= J. a+x° .1 dx

3

t I\/a+x &

xva®+x’ J.ja-l-Tax dx+azj.ﬁ dx +¢

x\/a2 +x° —J\/a2 +x% dx + a* sinh™! (ﬁj + ¢
a

2
X a _ X C
Hence A== +a2+x%> +—sinh™'|Z]+ ¢, where CZEI'
2 a

Exercise 6(c)

I. Evaluate the following integrals.

1. Ix sec’x dx on TC R\ {%% ‘nis aninteger}.

x 1 1 log x
2. fe (Tan x+1_|_x2 dx, x eR. 3. J. 2 dx on (0, o).
4. [(logx) dx on (0, ).
5. fex(secx+secxtanx)dx on ICR \ {(2n+1)g :neZ}.
6. fex cosx dx on R. 7. fex(sinx + cosx)dx on R.

8. I(tanx + log secx) e* dx on ((2n—%) T, (2n+%) ), ne”l.
I1. Evaluate the following integrals.

1. .fx" log x dx on (0, o), nisareal numberandn #—1.
[log (1+x?) dx onR 3. [Vxlog x dx on (0, o).

4. J.e\/; dx on (0, o). 3. _[xz cos xdx onR.



Integration

6. J.x sin? xdx onR. 7. J.x cos? xdx onR.

8. J.cos \/; dx onR.

9. Ixsecz 2x dx on ICR \ {(2nn+l)%:neZ}.

10. Ixcotzx dcx on ICR \ {nn : neZ)}.

T
11. Iex (tanx+se02x) dx on ICR\{(2n+1)E : nel}.

2. fe (—1” log x) dx on (0, =).

X
ax xe*
13. [e* sinbx dx onR, a,b€R. 14. [—“dx on ICR\ {1}
(x+1)
d
15, j—(xz +x2)2,(a>0) on R. 16. [e* log (¢* +5¢" +6) dx on R.

7. [er *2) jconlcRN (-3} 18 [cos(logx) dx on (0, <o).

(x+3)
III. Evaluate the following integrals.
_[ x Tan"'x dx, xeR. 2. f x> Tan'x dx, xeR.
Tan'x -1
3. [ 5= dx. xel cR\{0}. 4 [xCos™'x dx, xe(-11.
X
5. [ 2% sinTlx dx, xe(-11). 6. [ x log(1+x)dx, xe(~1,0).
7. fsin \/; dx, on (0, ).
8. [ e™sin (bx+c) dx, (a,b,c€R,b#0)onR.
9. J.ax cos 2x dx on R (a>0 and a#1).
10. [ Tan™ 30| e onlc R N {—L L}
' 1-3x2 NERNE]
11. [sinh™ xdx on R. 12. [ cosh™ x dx on [, ).

13. [tanh™ x dx on (-1, 1),

Note : Hereafter we do not mention the intervals [ and J.

221
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6.2.27 Evaluation of integrals of the form where a, b, c are
real numbers, a # 0.

Working rule : Reduce ax? + bx + ¢ to the form a[(x + o)?> + B] and then integrate using the
substitution #=x + Q..

6.2.28 Solved Problems

dx
4x* —4x— 7

Solution : 4x? —4x—-7 =4 (x* _x_Z)

N D S
—|:4(x 2) 2]

Thus 14—:4 ! dr+e

2
4x=17 (x_;j _ W2y

1. Problem : Evaluatej'

1 1 o ]
= — | ———— dt+c (onsubstituting ¢ = x——
4'[t2—(\/§)2 ( ¢ * 2)
11 1og|’_‘/§|+c by 6.2.18(2
422 ‘t+\/§‘ (by 6.2.18(2))
1 l—\/_
= lo
82
S - S )
8v2 2
2. Probl -F'de
-Problem: Find | o= 5.

Solution: 5-2x*>+4x=-2 (xz —2x-=

L4}

Ths [ L[ 1

5-2x" +4x _E 7
1

N |
N—
Il
|
[\
1
~
=
|
[S—Y
N
(3]

I

| v
|

(SN
L1




Integration

1 1
=—— I—Z dx+c (onsubstitutingr=x—1)
2 ) 7
T2
7
t'_
11 2
=—— log +c (by6.2.18(2))
2 7 \F
2 T+, —<
2 2
1 t=+3
= — lo +c
Wia e
1 | t+47 N 1 I x=1+4/% s
=——— 1o —_— —= | +c.
N P N7 B
dx
3. Problem : Evaluate I2—
X +x+1
Soluti X Hx+l= x+l 2—l+1 = x+l 2+3
olution : > 4 B 4°
d. d
Hence I P a :f 2x 2
X +x+1 1 \/g
x+- |+
( 2) 2
dt o
=I (onsubstituting ¢ = x+l)

2
2 4 2 af 2x+1
=ﬁTan ((%23)}0 =ETan ( f/g )“‘- (by 6.2.18(1))

6.2.29 Evaluation of integrals of the form

(i) and (ii)
where a, b, c are real numbers and a # 0
Working rule

Case (i) : If a> 0 and b? — 4ac <0, then reduce ax? + bx + ¢ to the form a[(x + ®)? + B] and
then integrate.
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Case (ii) : If a <0 and b2 — 4ac > 0, then write ax? + bx + c as (— a) [B — (x + ®)?] and then
integrate.

6.2.30 Solved Problems
dx

1. Problem : Evaluate | ———.
I VX2 4+2x+10

Solution : /x? +2x+10 = /(x+1)? +9.

Thes [—% o[ &

e +2x10 7 Jx+)2+3

dt
S o -
.[ /tz +_32 (on substituting t =x + 1)

sinh™ (L)+ ¢ = sinh™ (XTH) +ec.

3

dx
2. Problem : Evaluate J.—
V1I+x— x°

dx dx

+x—x ) \/—(x2 —-x-1)

Solution : _[\/1

= I dx _ J‘ dx
lemp-3] ey
= (ﬁ;t : (on substituting r=x—1)
Yt
2

3. Problem : Evaluate I\/3+8x—3x2dx.

Solution : 3+8x—3x = (-3) (x*-$x-1)
=3 [o-ar 1] =9 fe-9-3]
=3[9 - (-]



Integration

Therefore

[V3+8x=32 dx=3] K% 2—[x—%ﬂ dx +

2
- tzJ dt + ¢ (onsubstituting ¢ = x—%)

5
| e (32)SmIL+C

5
(g)
= l(x—%] V3+8x-3x" +£ Sin_1(3x_4] +c

2 63 5
(3x 4)\3+8x —3x? 3x—4 te
6 6\/_ 5
6.2.31 To evaluate integrals of the form
(® (ii) (iii)

where a, b, ¢, p, q are real numbers, a# 0 and p#0.

Working rule : Write px + ¢ in the form Adi (ax* +bx+c¢)+B and then integrate.
X

6.2.32 Solved Problems

1. Problem : Eval I—Hl
t
roblem : Evaluate Zt3x+12
. . d
Solution : We write x+1 = Aa(x +3x+12)+B
= A(2x +3) +B.

On comparing the coefficients of like powers of x on both sides of the above equation, we get

1 1 1 1
A= ) and B = 5 Hence x +1 (2x 3) X

N jx—“ I& __f
oW 12 2 4+3x+12 x2+3x+12

225
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Liog | +anena|-2[— & 4.
2 2° (x+3)°+%

1 ) 1 dx
—log | x"+3x+12|—— +c
2 ¢! | 2I<x+§)2+(€9>2

+3
%log |x2+3x+12|—% iTanl(x 2]+c

V39

%log|x2+3x+12|—

1 -1
—— Tan +c.
V39 ( \39
2. Problem : Evaluate _[(3x—2) N2x* —x+1 dx.

d
Solution : We write (3x—-2) = A d—(2x2 -x+1)+B
X
= A(4x—-1)+B.

3 5
A=3 and B=—2. Hence 3x-2="(4dx—1)->.
4 4 4

4
= j§(4x—1)—§ 20 —x+1 dx
4 4

%j(4x—1) V2x® —x+1 dx —%j 2x* —x+1dx+c

On comparing the coefficients of like powers of x on both sides of the above equation, we get

Therefore _[(3X —2)NV2x* —x+1 dx

2
3.3(2x2—x+1)3—ﬂj RN
43 4

—— | +—dx+c
4 16
3 2 _1
= l(zxz—ﬂ'l)z—& 1 x—l x—l +l+lsinh_1 (=) +c
2 4 12 4 4 16 32 77
(from 6.2.26(3))
2
- Lo ainio 2 (1) (1) A - Smh_l(zu—l) .
2 a2\ 4 4) 16 6442 J7

3. Problem : Evaluate |———a>— dx
. rrooiem : valuaie m .

Solution : We write

2x+5 = A%(x2—2x+10)+B = A(2x-2)+B.



On comparing the coefficients of the like powers of x on both sides of the above equation, we get A=
l and B=7. Thus 2x+5=(2x—-2)+7.

Hence J- 2X+5 dx: J- 2x—2 dx+7.|. dx Y
Va2 =2x+10 V2 =2x+10 Va2 =2x+10
dx
= 24X’ =2x+10 + 7| ——e=s+
e J‘«/(x—l)2+32 ‘

= 2Jx?=2x+10 + 7 sinh™! (XT_l)m

6.2.33 To evaluate integrals of the type
where a, b, p and q are real numbers, a0 and p#0

Working rule : Put = 4/ pX+¢q and then integrate.
6.2.34 Solved Problem

J' dx )
Evaluate (x+5)«/m

1

2+ x+4

Wehave #=x+4. Hence x+5=¢£+1.

Solution : Put 7= ,/x+4. Then dr = dx .

dt = 2Tan™! t+¢

=2 Tan'(Wx+4)+c.

dx J~2

Thereft =
erelore f(x+5)\/x+4 £ +1

6.2.35 To evaluate integrals of the type
®H (i)

where a and b real numbers, b = 0

2 X

1 1 1-tan”—

Workingrule: | ———dx = dx .. _ 2
mgru -[a+bcosx J. e . COSX o

- 5y an” —

a+b 2 2

X
1+tan® =
2
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(1 + tan® x) dx sec? X dx
2 2

-]

a(l+tan2)2€]+b(l—tan2;) (a+b)+(a—b)tanzg

X 1 ) X
Put tan — =17 Then = gec’Z dx =dt.
2 2 2

1 2
N N dt
Thercfore [ v =] (a+b)+(a—b)

and we can now integrate it by known methods.

X
2tan—
The integral in (ii) can be evaluated in a similar way by replacing sinx by

1+tan® >
6.2.36 Solved Problems 2

dx
5+4cosx

(1 + tan> xj dx sec? X dx
dx B j dx 2 _ 2

1. Problem : Evaluate J

S5+4cosx 1—tan2 X 5(1+tan2xJ+4(l—tan2x) 9+tan> >
5+4|— 2 2 2 2

1+tan> >

2

Solution : I

X 1 ) X
Put tan—=+¢ Then — sec® = dx = dt.
2 2 2

2 tan £
Therefore I dx j dr_ gTan’1 (é) +c= 2Tan{ 3 2 J +c.

5+4cosx -

9+7> 3 3
. dx
2. Problem : Find j - .
3cosx+4sinx+6
d d
Solution : .[3 : - p = I al
cosx+4sinx+ l—tanzz 2tan£
3 +4 2 146
1+tan® = 1+tan®> =

(1 + tan? xj dx
2

3(1—tan2 xj+ 8tan)26+6(1+tan2 ;j

\9)



X _ 1 ) X
Put tan — =1 Then = gec?Z dx =dt.
2 2 2

I _ 2dt B 2dt
Therefore I3cosx+4sinx+6 -[3 (- +8+6(1+1%) -[3t2+8t+9
2 dt 143
= Sl = 3 T i e
30+ )P+ 4 3 411 C3)

Jtan3+4
= 2 Tan" (an—Z}_ c.

Vit Vit

6.2.37 Evaluation of integrals of the type

..(A)
where a, b, c, d, e, f are real numbers, d+0,ex0
Working rule : We find real numbers A, w and y such that

(acosx+bsinx+c) = Adcosx+esinx+f] +u[dcosx+esinx+f]+y
and then by substituting this expression in the integrand, we evaluate the given integral.

6.2.38 Solved Problems

dx

1. Problem : Find Im~

1
Solution : We have cosx

d+etanx dcosx+esinx

Letus find A, wandy such that

cosx = A(dcosx+esinx) +u(d cosx+esin x)+7y

A(—d sin x + e cos x) + W(d cos x + esin x) + .
On comparing the coefficients of like terms on both sides of the above equation, we have

Ae+ud=1,-Ad+ue=0,y=0.

. . . e d
On solving these equations, we obtain A = ——, u=———, yv=0.
g q A2+ H d2 + 2 ¥
Therefore
J- dx _ lf(d CcOS X + esin x) dx+11 J~d cosx+esmxdx_|_c1

d+etan x d cosx+esinx

(d cosx +esinx)

A log |d cosx+e sinx|+pux+c¢,.

- #[@Helogl d cosx+esinx|]+c;.
e
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sin x COS X

dx and | —— dx.
dcosx+esinx

2. Problem : Evaluate J.d ,
COS X+ esin x

sin x COS X

Solution : Let A, = _[ —— dx and A, = _[ — dx.
d cos x + esin x dcosx+esinx
esin x+d cos x
eA, +dA, = dx = = 1
Now : ? J.a’cosx+esinx .[dx *Ta (1)
and _dA, +eA, = J-(—d sinx+e c.:osx)
dcosx+e sinx
= log|d cosx+esinx|+c, ..(i)
From (1) and (i1)
1 . ec, —dc
A, =m[ex—dlog |d cos x+esinx|]+c; where cs :#622; and
A = de+elos | d . _dc, +ec,
2 —m[ xX+e Ogl COS.X+€SIHX|]+C4 where Cy —m.
3. Problem : Evaluate fcosx+3s,1nx+7 dx .

cos x+sin x+1
Solution : Let us find real numbers A, i and y such that
cosx+3sinx+7=A(cosx+sinx+1) +u(cosx+sinx+1)y
= M-sin x + cos x) + W(cos x +sinx + 1)y
=(A+ W) cosx+(—A+ W) sinx+ (y+ Ww.
On comparing the coefficients of like terms on both sides of the above equation, we have
A+u=1; -A+u=3; u+y="7.

On solving these equations, wehave A =-1; u=2; and y=5. Therefore

cosx+3sinx+7
_f - dx
cosx+sinx+1
cosx+sinx+1) cosx+sinx+1 1
:—j( nx+1) dx+2 | : dx+5| : dx+c
cosx+sinx+1 cosx+sinx+1 cosx+sinx+1
) 1
=—10g|cosx+smx+1|+2x+5_|. - dx+c. . (A)
cosx+sinx+1
1
We now evaluate f dx.

cosx+sinx+1



1 1 2
f ; dx:f ) - dx :lJ‘ SeCZ dx
cosx+sinx+1 2cos” 5+ 2cos3sin g 2 “(I+tan?)
= f—éz- bstituti al
™ (on substituting t—tanE)
X
= log|1+¢| =log |1+tan5|.
Hence from (A),
J‘cosx+3s'1nx+7dx = —log|cosx+sinx+1|+ 2x+510g|1+tan£| +c.
cosx+sinx+1 2
6.2.39 Remark
h(x) ) C ) . .
If f(x)= ?, g(x) #0, where hand gare either polynomials in x or trigonometric expressions,
g(x

then to find f f(x)dx, sometimes it is possible to find constants A, u and y such that

h(x) =X g'(x)+u g(x) + .

In this case, ff(x) dx = I(kg'(x)ﬂL g0 ¥ Y) dx

g(x)

= 2 log | g(x)| e+ [ ——dx+c.
g(x)

1
If f ™ dx can be evaluated by known methods, then f f(x) dx can be evaluated.
g(x

Exercise 6(d)

I. Evaluatethe following integrals.

Lo ! d 2 Sind__ e
.| —dx .|
V2x-3x% +1 V2—cos? 6
J- _ COS)‘C dx I dx2
sin“x+4sinx+5 1+cos” x
dx
dx
IZsin2x+3coszx 6. I1+tanx

1
dx
7. Il—cotx
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II. Evaluatethe following integrals onany interval contained in the domains of the integrands.

9cosx—sin x
— 2 dx
L. ~[ 1+3x-x" dx '[4sinx+SCosx
I2cosx+3sinx I .[ 1 I
4cosx+5sinx 1+sin x+cosx
1
3xT+x+l V5-2x% +4x

II1. Evaluate the following integrals onany interval contained in the domains of the integrands.

x+1
1. jm dx 2. [(6x+5)V6-2x"+x dx

dx 1
“er —d
3 I rsens 4 e @
dx
5. [xAl+x—x dx 6.
I I(1+x)\/3+2x—x2
d 1
I3 - I dx
cos x+3sin x sin x++/3cosx
dx 2sinx+3cosx+4
_— d
o J.5+4<:os2x 10. I3sinx+4cosx+5 *
5-x 1+x
.| ) 2. | T
dx dx
13. 14, [—&
J.(l—x)\/3—2x—xz J‘(96'1'2)\/364‘1
s J‘ dx
Y (2x+3) Vx+2
1
16. dx
I(1+\/}) Jx—x?
17, -

(x+1) J2x2 +3x+1
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18. J.\/ex—4 dx
19. I\/1+secx dx

20 113%14

6.3 Integration - Partial fractions method

A rational function in x is the quotient of two polynomials in x. Ifthe degree of the numerator is greater
than or equal to that of the denominator, the function can be reduced by actual division to the sum of'a
polynomial and a rational function whose numerator is of degree less than that of denominator. Since the
integral of'a polynomial can be easily found, the problem of integrating a rational function reduces to that of

integrating a rational function whose numerator is of lesser degree than that the denominator.

In this section we confine our attention to integrate rational functions whose numerators and denominators

are all polynomials with real coefficients.

Let R(x) be arational function. We find _[R(x) dx 1inthe following way.

Let R(x) = f Ex; , Where fand g are polynomials and g# 0 on L.

g(X

h(x)
gx)’

If degf(x)>degg(x), then by dividing f(x) by g(x), we get R(x) = Q(x)+

where Q(x) and A(x) are polynomials and either #(x)=0 or deg A(x) <deg g(x).
Here, deg f denotes the degree of the polynomial f.

Now  [R(x)dx=[QGx) dr+ [ dx Wewrite R, ()=l
8(x) 8(x)

When 4 #0, using the theory of partial fractions, the fraction hx) can be resolved into a sum of simpler

g(x)
fractions, which can be easily integrated. In this resolution, we come across four different types of fractions as

shown below.

(1) —>A,b,carereal constantsand b # 0
bx+c
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A
(i) —, A, b,carereal constants, b # 0 and kisapositive integer> 1.
(bx+c)
Ax+B . :
(iiy ———> A,B,a,b,carereal numbers, ¢ #0 and b?> —4ac <0 (ax*>+ bx + cis an irreducible
ax” +bx+c
factor).
. Ax+B 5 . »
(iv) ————, A,B,a, b, care real numbers, a#0 and b°-4ac<0 and k is a positive
(ax”+bx+c)
integer > 1.
. . . h(x)
Let us now consider the problem of integrating R, (x) = =%
g(x

Case (i) : The roots of g(x) = 0 are real and distinct.
Let these roots be x, x|, ..., x;. Then g(x) = a(x —x;) (x —x,) ... (x — x,).

Then, from algebra, we know that there exist unique real constants A, A, ..., A, such that

R, (x) = h(x) _ A, A N A,
gx) x—-x, x-—x X=X,
d. d.
Hence _[Rl(x)dx = AOJ- al A, +...+Ak_[ al + log|c]|
X—x, X=X X=X,

Ajlog | x—x, |+ A log| x—x |+..+ A, log | x—x, | + log]|c]|.

log | c(x—x,) (x—x)™ ...(x—x,)* |, for some constant c.
6.3.1 Solved Problem

3
x =2x+3
Find J—z dx.
X +x=2
Solution : We note that the integrand is a rational function in which the degree of the numerator is greater than

that of the denominator. Using synthetic division, it can be shown that

x3—2x+3_(x_1)+ x+1
+x=2 O+x-2
Hence, we have
3
x’—2x+3 x+1
——dx = x—-Ddx+|———dx+c
J.x2+x—2 J.( ) Ix2+x—2



_ (- 1) f x+1
x4+ x— 2
In order to evaluate the integral on the R.H.S. we resolve the integrand into partial fractions. From the
theory of partial fractions, we know that
x+1 _ x+1 _ A N B
FHx=2 (x+2)(x-1) x+2 x-1

for some unique constants A and B. We have
x+1) = Ax-1)+Bx+2) = (A+B)x+(-A+2B).
On comparing the coefficients of like powers of x on both sides of the above equation, we get

A +B=1 and —A+2B=1.

. . 1
On solving these equations, we get A = 3 and B = % . Therefore, we have

x+1
oo =53

x+2 3 J—+10g|c|

1 2
= 5log|x+2|+§10g|x—1|+10g|c|

1 2
= log|c(x+2)3(x-1)3].

3_ _1\2 1 2
(2725 g = D g e (o2 (-1
X +x-2 2

6.3.2 Solved Problem

Thus

Solution : Using the methods of partial fractions, it can be shown that

I 171 1
x*-81 x2-92 18| x-9 x+9]

= —[log|x-9|-log|x+9|]1+¢

dx 1
Hence Ix2—81 = E{

1
=—1lo g|—|+c on any interval IC R\ {-9,9}.

18

Case (ii) : The roots of g(x) = 0 are real but some roots are repeated.



236 |Mathematics - IIB|

When x;, is aroot of g(x) = 0 of multiplicity &, the contribution of x,, arising from resolving h(X) into
X
partial fractions gives a sum of the type 8 ()
A A A A

x=x, (x=x)% (x-x) = (x—x)f

for some unique constants A |, A,, ..., A,.

Each of'the k terms can be easily integrated. We illustrate this case by the following solved problem.

6.3.3 Solved Problem

2x%* —5x+1
x2(x*=1)
Solution : We have x>(x? = 1)=x%(x—1) (x + 1).

From the methods of partial fractions, it follows that there exist unique constants A, B, C, D such

Find J.

that

2x* =5x+1 _ A
X

2x" —5x+1 B
xX(x*=1) 2

X

x—1 x+1 (1)

Hence
2x2-5x+1= Ax(x2=1)+B (x2—1) +Cx2 (x + 1)+ Dx? (x — 1) . In the above equation, if we
letx=0, wehave 1 =-B or B=-1. Ifx=1, we have —2=2C or C=-1, and if x = —1 we have
8=-2D orD=4. To find A, we equate the co-efficients of x> on either side of the equation and obtain
0=A+C+D. SinceC=-1and D=-4, wehave A—1-4=0sothat A=5. Hence, by substituting
A=5, B=-1,C=-1and D=-4in (1) and then by integrating we get
sz2 —Sx+l IS

(-1 X X x—=1 7 x+1

Slog |x|+l—log|x—1|—4log|x+1|+c
x

1
—+log
X

——|+¢
(=1 (x+1)°
Case (iii) : Some roots of g(x) = 0 are non-real (complex numbers), but no such root is repeated.

From algebra, we know that the complex roots of a polynomial equation with real coefficients occur in

conjugate pairs. Hence if a + ib, b # 0 is a root of g(x) = 0 then a — ib is also a root, where i =+/—1.

Hence, g(x) contains a quadratic expression of the form owx® + Bx +7 as one of its factors, where o, 3, y are

real numbers and B? — 4oy < 0 iff g(x) has two complex conjugate roots.



h(x)
g(x)

earlier. The contribution of an irreducible quadratic factor ox? + Bx + vy inthe resolution of

The contribution to the resolution of into partial fractions for the real roots has been discussed

h(x)
g(x)

into partial

Ax+B

, which can be integrated following the
ox’ +PBx+y

fractions is a term of the form

discussionin6.2.31.

The following solved problem illustrates this case.
6.3.4 Solved Problem
) 3x-5
Find ] X(x2 +2x+4)

Solution : The discriminant of x2 +2x+4is4 — 16 =-12 <0.
Hence x? + 2x + 4 is irreducible.
From the theory of partial fractions, it follows that there exist unique constants A, B, C such that

3x=5 A Bx+C
+

x(2+2x+4) x  x>+2x+4
Hence 3x—5= A(x"+2x+4) +x(Bx+C)
= (A+B)x2+(2A+C)x+4A.
On equating the coefticients of like powers of x on both sides of the above equation, we get

A+B = 0; 2A+C=3 and 4A =-5.

5 5 11
On solving these equations, we get A = —Z; B= 1 ; C=E.
Thus .[23)6—_5 dx=—§ ﬁ+l %
x(x"+2x+4) 47 x 47 (x+1)"+3
5 1, 5x+22
=—=log|x|+ — | ——F——dx+c
4 47 (x+1)"+3

To evaluate the integral on the RHS, putu=x+ 1. Thenx=u—1; dx=du and

S5x+22 Su+17
J. 2 = .[ 2 du.
(x+1)°+3 u +3
u
=5 du+ 17 du.
J.u2+ ‘[u2+3
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N e

% log | x> +2x+4| + 17 Tan_l(x—ﬂ}

N NS
3x-5

Thereore Iz— dx = —§10g|x|+§log|x2+2x+4| +—17 Tan™! X+l +c.
x(x“+2x+4) 4 8 43 3

Case (iv) : The equation g(x) = 0 has complex roots and some of them are repeated.

%log |u®+3| +1—7Tan_1(i)

We know that if z, is a complex root of g(x) =0 of multiplicity ,thensois z,. Hence corresponding
to two conjugate complex roots a +ib, a — ib, b# 0 of g(x)= 0 of multiplicity &, there corresponds an
irreducible quadratic expression o2 + Bx +v (with a + ib, a — ib as zeros) which occurs exactly k times

in the factorization of g(x).

h(x)

from the factor (o2 +
g(x)

When k> 1, the contribution to the partial fraction resolution R, (x) =

Bx +v)* consists of the sum of the partial fractions of the type

A x+B, A,x+B, A, x+B,
o +Bx+y (o +Px+y) (o +Px+y)<

The contribution to the partial fraction resolution from non-real roots of multiplicity one and real roots
has been discussed earlier.

We illustrate it in the following solved problem.
6.3.5 Solved Problem

2x+1
x(x* +4)?
Solution : From the theory of partial fractions, it follows that there exist unique constants A, B, C, D and E
such that

Find _f

2x+1 A Bx+c Dx+E
2 ;=13 Tt 2"
x(x"+4) x x'+4 (x"+4)

Hence 2x+1 = A(x? + 4)2 + (Bx + C)x (x2 + 4) + (Dx + E)x.

On expanding the right hand side of the above equation, and rearranging, we have

2x+1 = (A+By*+Cx3+ (8A +4B + D) x? + (4C + E)x.

On equating the coefficients of like powers of x on both sides of the above equation, we obtain
1

A+B=0; C=0; 8A+4B+D=0; 4C+E=2, A= —.



On solving these equations, we obtain

1 1 1
=—. B=——,C=0, D=——and E=2.

16° 16° ’ 4
Hence
—1lx+2
J- 2;c+12dx 1 @_L 2x x+J-( gx 2)d v,
x(x”+4) 16 327 x"+4 (x"+4)
1 1 dx
=—Ilog |x ——10 X+ + +2 +c (1
16 glx] 32 g )t 8(x>+4) I(x2+4)2 ! M
dx
We now evaluate f m )
Put x =2 tan 0 for Ge[—g 5] Then dx =2 sec?0 do.
dx 2sec’0
Hence I 5 2='[ 3 Se¢ 5 ——I —JCOSQGdG
x*+4) 4%(1+tan’ 0)? sec’ 0
1 1 sin 20
=— |(1+cos20)dd =— |0+ +c
16J.( cos20) 16{ ) } 5
1 tan 6 1 g x 2x
=—|0+———|+c, =— | Tan"| - |+ +c
16[ 1+tan26} : 16{ (2J 4+x2} 2 +(2)

Thus from (1) and (2) we get

2x+1 1 1 2 1 1 S x) 1 X
T = log|x|-—log(x*+4)+—— +=Tan!| X |+= +
S vy 16 oelxlm gy loet g 42 Tan (2) 4(4+x2] ‘

where ¢ = ¢ to,

Exercise 6(e)

I. Evaluate the following integrals.
2

x—1 X
L. I(x—2)(x—3)dx 2. I(x+1)(x+2)2dx
J- x+3 e J- dx
G+ A )
dx dx
5. 6. [ &
Iex +e* I(x+1)(x+2)
1 1
7. dx 8 [ -
Iex—l I(1—x)(4+x2) a
J- 32x+3 dx

X +x"—-2x
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II. Evaluatethe following integrals.

dx dx
L[ 2 |/
6x> —5x+1 x(x+1) (x+2)
_ Tx—4
_[ 3x-2 5 4 .[—2 dx
(x=1) (x+2)(x=3) (x=D" (x+2)
III. Evaluatethe following integrals.
1 2x+3
1. dx 2. .[ dx
I(x—a) (x—b)(x—c) (x+3) (x* +4)
2x% +x+1 dx
.[ 7 X : 3
(x+3) (x=2) x+1

dx

5 ,[ sin x cosx
" Y cos’x +3cosx+2

6.4 Reduction formulae

There are many functions whose integrals cannot be reduced to one or the other of the well
known standard forms of integration. However, in some cases these integrals can be connected
algebraically with integrals of other expressions in the form of a recurrance relation which are directly
integrable or which may be easier to integrate than the original functions. Such connecting algebraic
relations are called ‘reduction formulae’. These formulae connect an integral with another one which
is of the same type, with a lower integer parameter which is relatively easier to integrate. In this

section, we illustrate the method of integration by successive reduction.
6.4.1 Reduction formula for being a positive integer

Let I = _[x” e dx.

On using formula for integration by parts, we get

n ax ax
x" e je
I, = - _[n KNy
a a
n ax
x" e n _
— _n n leax dx
a a
x"e™ n
a a

This is called a ‘reduction formula’ for 'f x" e dx. Now [, in turncanbe connectedtol,_,. By

eax

successive reduction of », the original integral I, finally depends on I, where I = J.e“x dx = —.
a
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6.4.2 Solved Problem

Evaluate Ix3e5x dx.

241

Solution : We take a =5 and use the reduction formula 6.4.1(1) forn=3,2, 1 inthat order. Then we have

3 5x
3
L= [Pea =252,
3 I 52
2 5 51
ECA
1 5 0
Sx
and Iy = ¢ te
5
3 5x
_ Xe 3 25x, 6 s 5x
Hence I3 = 5 —5—2x +5—3xe 5—46 +c
6.4.3 Reduction formula for for an integer n > 2

Let I, =sin"xdx

. (n— . .o d
= J.sm(" Dy sinx dx = J‘sm" Ty d—(—cosx) dx
X

=sin""™D x (=cosx)— ~l‘(n —1)sin™ 2 x cos x(—cos x) dx
= —sin"" x cosx+ I(n —1)sin"2 x (1—sin? x) dx

—sin™ ! x cosx+ (n—1)jsin"‘2x dx—(n—l)jsin"x dx

= —sin" " x cosx+ (n—1) I, , —(n-DI,.

- n—1
—sin” " xcosx (n—1)
Hence I, = . + . I, .

This is called a ‘reduction formula’ for j sin” x dx.
If n is even, after successive reduction, we get

I, =_[(sin x)" dx=x+c,.
Ifnis odd, after successive reduction, we get

I, =[(sinx) dx=—cosx+c,.

6.4.4 Solved Problem

o)
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Evaluate _[sin4 x dx.

Solution: On using the reduction formula 6.4.3(2) for Isin" x dx with n =4 and 2 in that order we
have

sin*x cosx 3

I, = [sin*xdx = ————" 41
4 _[sm x 4 12
—sin®xcosx 3[ sinxcosx 1
4 4 2 2
—sin’ x cosx 3 . 3
= ——————— ——sinxcosx + —x+c.
4 8
6.4.5 Reduction formula for for a positive integer m and an

integer n>2

Let 1 = fsin’" x cos” x dx

'y . cosxdx

_[sin'" x cos”"”

= Isinm x cos" 1 x i(sin xX)dx
dx

. m+1
J.cos"_1 X 4 [%j dx

dx m+1
1 n—1 m+1 s m+l n—1
= cos’ x sin" x——— | sin" — (cos"  x) dx
m+1 m+1
_ -1 .
= cos"™ x sin™ x+—— | sin"™"? x cos" % x dx
m+1 m+
_ ) n—1 ) _
= cos" T x sin™! x+—— | sin™ x cos" % x(1—cos” x) dx
m+1 m+
_ ) n—1 . _ n—-1¢.
= cos" ' x sin™! x+—— [ sin™ x cos" > x dx — Ism’"x cos” x dx
m+1 m+1 m+1
_ . n—1 n-1
= cos" ' x sin”™! x+ R
m+1 m+1 m+1 ™
1 _ ) n-—1
Hence I, , = cos" ' x sin™! x+ L, 1o ..(3)
’ m+n m+n

which is the required reduction formula.
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6.4.6 Reduction formula for for an integer n > 2
Let I, = Itan”x dx
= J.tan”_2 x tan” x dx

= J-tan"_2 x sec’ x dx — J.tan”_zx dx (- tan’?x=secZx—1)

tan" " x

T oa-1 Lo

which is the required ‘reduction formula’.

Whenrniseven, I, will finally depend on I, = J.dx =x+g.

When nis odd, 1, will finally depend on I, = _[tan x dx = log |sec x|+c,.
6.4.7 Solved Problem

Evaluate J.tan6 X dx

Solution : On using 6.4.6(4) with n = 6, 4, 2 in that order, we get

5
tan” x
I, = ftan6 xdx = 5 —Itan“xdx
5 3
tan" x tan” x
= — +J‘tan2 x dx
5 3
tan5 X tan3 X
= - +tanx—x+c.
5 3
6.4.8 Reduction formula for for an integer n > 2
Let I = fsec" x dx = fsec"‘2 x sec’ xdx

_ d
= fsec" 2 x —(tanx) dx
dx
= sec"? x tanx—ftan x(n—2) sec"? x tan x dx
_ -2
= sec" x tanx—(n—2)[fsec” x dx— [sec” " x dx ]

= sec" % x tanx—(n—2) I, -1._,).

n—-2

. 1 _
Thatis, I = ——sec"”x tanx+
n—1 n—1
That is the required ‘reduction formula’.

I,

When nis even, the last integral to which I, can be reduced is I which is fdx =x+c.

When 7 s odd, the ultimate integral is I, which is fsec xdx =log |secx+tanx| +c,.

243

()

.. (5)
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6.4.9 Solved Problem

Evaluate _[sec5 x dx.
Solution : On using the reduction formula 6.4.8 (5) withn =15, we have

sec’ xtanx 3
4 4

I jsecs xdx =

sec’ x tanx 3 secxtanx 3
= += +=1,
4 4 2 8

sec’ x tanx 3 3
= T +§ secxtanx+§ log |sec x+tan x| + c.

Exercise 6(f)

I. Evaluatethe followingintegrals.

—_—

[er a+x*) ax 2. [x*e™ dx
: Ix3e“x dx

98]

II. 1. Show that J.x” et di=—x"e"+n Ix"_l e " dx

n—1

1 R
2. If 1, =_fcos"x dx, then show that I, =—cos" ™ x sinx +
n n

L_,.
III. 1. Obtainreduction formula for I, = Icot” xdx, nbeingapositive integer, n>2 and deduce the
value of J.cot4 xdx.
2. Obtain the reduction formula for I, = J.cosec" xdx, n being a positive integer, n > 2 and
deduce the value of I cosec’ xdx.

3.If1, , =.[sinm x cos" x dx, thenshow that

I B sin” ' x cos™! x N m—1 I
,n - -2,n°
e m+n m+n "

for a positive integer » and an integer m > 2.
(compare it with the formula obtained in 6.4.5(3)).

4. Evaluate Isin5 x cos* x dx.

b

5. If I, = J.(log x)" dx thenshowthat I, = x (logx)" —n I,_;, andhence ﬁnd_f (logx)* dx.



7 [Key Concepts ]

O
L X4

LetEbeasubsetofRandlet /: E — Rbea function. If thereis function F on E such that F(x)

=f(x)forall x € E, then we call F an antiderivative of f or a primitive of f.

% LetIbeaninterval of R. Let /:1—R. Suppose that / has an antiderivative F onI. Then we say that
fhas an integral on 1 and, for any real constant ¢, we call F + ¢ an indefinite integral of fover 1 and
denoteitby ° f f(x) dx’.
Hence f f(x) dx = F(x)+c; ciscalled a constant of integration.

, d

# (70 dr)=f -

If /:1—R isdifferentiable on I, then If’(x) dx = f(x)+c where cisaconsant.

72
%

0,
%

Indefinite integrals of certain standard forms

n+l
(a) If nERN\ {~1}, then [x" dx =2 onR.
n+l1

(b) J.% =log| x|+ ¢ on any interval ICR\ {0}.

X

(c) If a>0 anda # 1, then J.ax dx =

+c¢ onR.
log, a

(d) _[ex dx=e¢"+c, xe R.
(e) _[sinx dx =—cosx+c, x€ R.

) J.cosx dx =sinx+c, x€ R.

2n+1)m
(2 jseczxdxz tanx+c on ICR\ {%:ne Z}.

(h) jcosec2x dx =—cotx+conlcR\ {nn:neZ}.

, 2n+Dn
( Isecxtanxalxzsecx+conICR\ TWEZ .

=

() fcosecx cotxdx = —cosec x+conlCR \ {nn:ne Z}.

1 _
= dx = Sin ' x+c on(-1,1).
X

®) le_—

= —Cos~'x+con(-1,1).
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J 1 \
)] f dx = Tan™! x+c¢ onR.

= —Cot"lx+conR.

1
™ I|x|Vx2—1

1+ x2

dx =Sec™ x+c.

= —Cosec™!

x+conanyinterval I C (—eo,—1) U (1,0) .
(n) fsinhx dx = cosh x+c onR.

(0) fcoshx dx = sinh x+c on R.

(p) fsechzx dx = tanh x+c on R.

(C)) J.cosecth dx = —coth x+c on R\ {0}.

(r) fsechx tanh x dx = —sech x+c on R.

(s) J.cosechx coth x dx = —cosech x+c¢ on R\ {0}.

() .[ 1 dx = sinh 'x + ¢
2
1+ x
= log (x++x>+1) on R.

1 cosh™'x+c¢ on (1, =)
I dx = .
Jx? =1 —cosh™ (=x)+ ¢ on (—o0,—1)

(u)

_ Jlog (x++/x* =1)+c on (1, )
—log,(~x+vx>=1)+c on (—eo,—1)

= log |x+m |+¢c on TR\ [-1,1].
% If fand ghave integrals on I, then /+ g has an integral on I and
f(fig)(x) dx = Jf(x) dx ifg(x) dx+c.
% If f hasan integral on I and a is a real number then a f/ has an integral on I and
[af)(x)dx=a [ f(x) dx+c.
% Method of substitution

Let /:I— Rhavean integral on[and F be a primitive of fonl. LetJbeaninterval of Rand g
:J — Ibeadifferentiable function. Then (fog)g’ has anintegral onJ, and

[ f(g(x) g'(x) dx = F(g(x) +c.

[ e Jreewa=[[roda]_ . )




/

R
L X4

Let /: I—R have an integral on I and F be a primitive of /. Leta, b € R with az 0. Then
If(ax+b) dx = L F(ax+b)+c forallx€ J, whereJ={x€ R:ax+bel}.
a

Let /:1— Rbedifferentiable. Then the following are true.

' (%)
(a) If f isnever zero on I, then 7 has an integral on I and f % dx =log| f(x)|+c

onl.

(b) Ifois a positive integer or if o € R\ {~1} and f(x) > 0 for all x € [then f“f has

o+l
an integral on I and .[[f(x)] f/(x) dx = [f():)-]l
i 1 f'(x)
In particular, when oc=——, we have _[ ) dx =2\ f(x)+c onl

(c) If a € R\ {0}, then ff’(ax+b)dx =l flax+b)+c on)J={x€eR:axt+bel}.
a
Integration by the method of substitution continued

Let ] be an interval and @ : ] — I be a one-to-one differentiable mapping of J onto I such that ¢!
is differentiable in I. Let /: I— R be such that (fo@) ¢" has a primitive F on J. Then f has an

integral on [ and

J e =F@ e =|[ Fowowar |

Evaluation of integrals of special forms

Leta be a positive real number. Then we have the following :

(a) .[ —l Tan_1(£J+c onR.
X’ +a’ a a
1 . .. .
(b) J. o = 2— log i any interval containing neither — a nor a.
a x+a

dx = sinh_l(fj onR.

a

o {x+\/x2+a2 ]
= log| ——— |[+c onR.

1
=

a

(d) _[\/7 = Sin~ ( j+c on(—a,a).
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R
L X4

\
cosh_l(i) +c on (a, «)
a

dx
© |- ;
X o—a —cosh_l(——)+c on (—o,—a)
a
(x+\/x2—a2}
a

log +c on (a, %)

—x+Vx*-a’
—log| ———— | +c on (—oo,—a)

a

B log|x+\/xz—a2 |

a

2
2 Sin™ (fj +§\/a2 —x* +¢ on(-a,a).

2 a
wxt-a® &t h_l(x

> —— cosS z)+c on [a, o)
(@) Vx? —a’dx
'[ xwxt—a?

+ ¢ on ICR\ [-q,a].

(H I\/(lz —x%dx

2
+a7 cosh_l(—£)+c on (—oo, —a]

2 a
[2 . 2 2
h az+x2a’x=u+a—sinh_1 i +con R.
(h) 2 2 a

Formula for integration by parts
Let u and v be real valued differentiable functions on I. Suppose that uv’ has an integral on I.
Then uv’ hasanintegral on I and I(uv') (x) dx = (uv) (x)— J (u'v)(x)dx

Givenadifferentiable functionfon 1,

[e“(fFo+ frydr = e f) +e.

To evaluate integrals of the form

1
J.z— dx, where a, b, c are real numbers, a0, reduce ax?+ bx + c to the
ax”“+bx+c
form a[(x+o)?+ B] and then integrate using the substitution #=x+qL.
. . . dx
To evaluate integrals which are of the form (i) j— or of the form

Nax* +bx+c

(i1) I Vax® +bx+c dx ,wherea, b,carerealnumbers and a # 0, we adopt the following working rule

(




/

case (a) : Ifa>0and b2 — 4ac <0 then reduce ax? + bx + c to the form \
a [(x+ o)? + B] and then integrate.

case (b) :
If a <0 and b2 — 4ac > 0 then write ax? + bx + c as (—a) [B — (x + a)?] and then integrate.

To evaluate integrals of any of the three forms

pxtq px+q
(1) dx (i) [(px+q) Vax* +bx+c dx and (iii)
'[ax +bx + '[ prTa '[\/ax +bx+c

where a, b, ¢, p, g are real numbers, 420 and p#0, we write px + ¢ in the form

A di (ax* + bx +c) + B and then integrate.
x

To evaluate integrals of the type j where a, b, p and g are real numbers, a # 0

dx
(ax+b)\px+q

and p#0, weput t =,/ px+q and then integrate.

Integrals of the form

d dx,
(@) Ia+bcosx % and (ll)fa+bs1nx *

where a and b are real numbers and b # 0, are evaluated by using the substitution ¢ = tan %

Integrals of the form

dx

J~ acosx+bsinx+c
d cosx+esinx+ f
where a, b, c, d, e, f are real numbers d # 0, e# 0 are evaluated by using the following rule :
We find real numbers A, W and y such that
(acosx+bsinx+c) = Aldcosx+esinx+ f| +u[dcosx+esinx+ fl+y

and substitute this expression for the integrand, to evaluate the given integral.

Let R(x) = f Ex; , where fand g are polynomials in x with rational coefficients and g+ 0 on I.
g(x
If the degree of f(x) is greater than or equal to that of g(x), then by dividing f{(x) by g(x), using

synthetic division, we find polynomials Q(x) and A(x) such that f{x)=Q(x) g(x) + A(x), where his
either the zero polynomial or 2 # 0 and degree of /4(x) is less than the degree of g(x). Inthis case, we
have

h(x)

R —_
(%) = Q(x) ()
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= N
. . b)) e h(x)
When £ # 0, we obtain the resolution of % into partial fractions using which we evaluate _[ o dx.
g(x
f(x) h(x)
——dx = x)dx + dx+ec.
Wehave [y dx = QU [0S
n _ax
& If I, = J. x" e“dx, then 1, = * ¢ —EIn_l, for a positive integer 7.
a a
n—1

—sin”  x cosx +(n—1)

e If I, =I sin” x dx, then I, = I,_,, foranintegern>2.

n

n—1 .
~1
% 1f 1, =] cos”x dx, then I, = % LoD

I,_,, foranintegern>2.
n n

tan" "1 x

@ If I, :.[tan” x dx, then I, = -1I,_,, foranintegern>2.

- . n—1
cos" Iy sin™Hx+ — 1
m+n m+n

* IfL,, :_[sin’"x cos” x dx, then I, , = mn—2

where m is a positive integer and an integer n > 2.

Historical Note

The beginnings of ‘Integral Calculus’ can be traced back to antiquity. Ancient mathematicians
of Greece developed the method of exhaustion which they have applied to calculate areas of plane
surfaces and volumes of solids. Thus this method can be regarded as a primitive procedure for
integration. Eudoxus (ca.408-355 B.C.) and Archimedes (ca. 287-212 B.C.) contributed vastly to
the development of the method of exhaustion.

Walli's (1616-1703) chief contribution to the development of calculus in its early period lay in
the theory of integration.

With the invention of the calculus, the fundamental concepts of function, continuity, differentiablity
and integration got systematized.

Augustin Louis Cauchy (1789 - 1857) gave the modern definition of continuity in his ‘Cours
d’ analyse’ (1821). He defined the definite integral as a limit of a sum. He introduced Cauchy sum

Y f(x;) (x; — x,_,) for a continuous function fon [a, b] and defined the limit of the sum as the definite

i=1
integral.

Bernhard Riemann (1826-1866) began with the question ‘when is a function integrable?’,
which led him to the investigation of convergence of Cauchy sums. Thus he refined
and clarified the notion of integral and that is what we call now the ‘Riemann Integral’
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I1.

11.

13.

14.

16.
18.

4
X 23 3x+¢
4 3

5
% % x3+c
logx—Z\/;+c
2 1
X 4 ATan "x+¢

2

tanh™! x+Tan ' x+c¢

tanx + ¢

35 1.7
5x 7x +c

logx—i—l+c

Ix x

2,2_4,.1
9% 9x+910gx+c

X—X3+

3

tanx—sinx+x?+c
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—\/ECOSX'FC
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N
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x> .3 1
T +§X—510g|X|+C

x+210g|x|+%+c

e* —log|x|+2log | x +Vx* —1]+c
Sin~' x+2sinh ' x+¢

1
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2( )
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6+/x —2log x e

I 43x+1

1 +
) 2og|x| c
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o

T sin x+4sinh™ x+¢
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1
—Ccotx——x+c¢
2

—cosh x+sinh x+¢
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10.

12.

13.

14.

15.

16.

II. 1.

Exercise 6(b)

%e +c 2
%10g(1+x2)+c 4,
3
—(logx) +c 6.
3
—cos(Tan" x)+¢ 8.
Tan' X’ +¢
2 nh-13x
3s1nh 5+c 11.

_ 1| cos(m+n)x cos(m—n)x
2{ m+n) | (m-n) }fc

1[ sin(m—n)x _sin(m+n)x
2| (m-n) (m+n)

l_sin(m+n)x sin(m—n) x N
2| (m+n) (m—n)

1
476 4 C0s4x 3

_cos6x_l 4 _COS2x:|+C

(x+a)cosa—sinalog|sin(a+x)|+c

2 3
£(3x-2)* +c 2.
9
2
(log(1+ x)) te n
2
%\/1+5x+c 6.
_%‘FC 8
2(1+tan x)
- 1. +c 10.
1+sinx

—%cos7x+c

—cos(x2 +1D)+c

T -1
e™ “+c

1. -1x
4tan 2+c

cosh™ 3x+c

%10g|7x+3|+c
L3324y e
12

_(1-2x7)

2 +c

—lCOSX4 +c

4

3...%
Zsm-” x+c
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11. ex +c 12. xX+c
13. %Sin_1x3+c 14. %Tan71x4+c
15. éTan_lx9+c 16. tan(xe")+c
1
17. +c 18. — x
4b(a+bcot x)* coser ¢
19. —cos(logx)+c 20.  log(|logx|)+c
n+l
21. (14—1%}16)_% 22.  sin(logx)+c¢
23. 2sinvx+c 24,  log|x*+x+1|+c
25. Z;Lnloglbxn-l_cl-l_cl 26.  log|log(log x) |+ ¢
27. log|sinh x |[+¢ 28, 3Sin” @n+c
29. sinh_l(%)+c 30.  2Tan'(Wx+2)+c
1 1 x
31, —— 1 32. Tan( )+c
I+tanx < V2 \/—x
33. %10g|1+2tanx|+c 34.  (sinx+cosx)+c
35. 2sinx+c 36. x+c
_2 __a
37. - [log|a+bcosx|+ (a+bcosx)}+c
38. - L e
2(sec x +tan x)

39. L q.nl(a
abTan (btanx)+c

40. 1 sin (x — b)|
sin(b —a) log sin(x — a)|

A1 1 sec(x — b)|
© Sin(a—b) “%|secx—a)|
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I11.

10.

I1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

b

1

—da

log |sin (log x) |[+¢

n,l
log tan(4 + ’ tan x
tan5 X
5

3
—%(cotx)2 +c

%(log (sec x+tan x))2 +c

)

+c

1 _
B (cos3x—9cosx)+c

1 e .
12(sm3x+9smx)+c

%(sin3x+3sin xX)+c

sin4x

8

sin 2x

4

log | acos® x+bsin® x |[+¢

3L2(12x+sin4x+8sin2x)+c

1 5 1 3
Lars3?-Leaxs3)?+c

Lsint (—b+ Cx)+ ¢
Cc a

lTan_1 ( b+ ij +q
ac a

x—log(l+e")+c

2
191—3{(a+bx)—2alog|a+bx|— 4

4
3

(1-x)

_2q-
51-x)

N3

-2

a+bx

1-x+c¢

Je

log |cosx+sin x |[+c¢
log|sine* |+¢

3
%(sin x)2+c

2\/)62 +3x—-4+c
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II.

10.

11.

13.

15.

16.

17.

18.

Exercise 6(c)

xtan x — log|sec x |[+c 2. "Tan 'x+c
~L1ogx—L+e 4 log x)* —2x1 2

X X - x(logx) xlogx+2x+c

X

e secx+c 6. %(sinx+cosx) +c
e*sinx+c 8. e"log|secx|+c

x"”z [(n+1)logx—1]+¢ 2. xlog(l+x*)—2x+2Tan"' x+c
(n+1)

3 3

%x2 logx—gx2+c 4. 2\/;e\/;—2e\/;+c

x2sinx+2xcosx—2sinx+c

2
X

X1 _1
4 4xsm2x 80032x+c
x—2+lxsin2x+lcos2x+c
4 4 8

2(«/;sin\/;+cos\/;)+c

tan2x 1
x— 4log|se02x|+c

2
—xcotx+log|sinx|—x7+c

e’ tan x+c 12.  e‘logx+c
azej-xbz(asinbx—bcosbx)+c 14. x11€x+c

L | Tan! (i)+lsin2 Tan ™" (1) +c
2a° al 2 a

e log (e2*+5¢°+6)+2log (¥ +2) + 3log(e*+3) -2 + ¢

X
e

x+3

+c

X

2 cos(log x)+sin(log x)]+ ¢
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III. 1.

2.

10.

11.

12.

13.

2
(x 2+ 1) Tan™ x—lx+c

2
x—3Tan_1 x—x—2+llog(1+x2)+c
3 6 6
Tan™' x

+10g|x|—%10g(1+x2)+c

2
x?Cos_1 x+%Sin_1x—%x\/1—x2 +c

3 3
X qin-l o121 [{_.2
N Sin" x 9(1 x7) +3 1-x"+c¢

2
%[(xz 1) log(1+x)—x7+x}+c

2(sin \/;—\/; COS\/;)+C

ax
e

) [asin(bx +c)—bcos(bx +c)]+¢;
a +b

2a” sin2x+ (loga)a™ cos 2x e
(loga)® +4

3xTan™ x—%log(l +x%)+c

xsinh_lx—\/x2 +1+c¢
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N
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Fm (B

I1.

II1.

1
2

1
2
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x+log|4sin x+5cosx|+c

23, 2
417741

10g|1+tan%|+c
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7
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log— c
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1 18
25log|3smx+4cosx+5|+25
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2 3
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2tan X +1
%log 2 +c
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Hit e

A2x+4 1
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e
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V x+1
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Chapter 7

“If only I had theorems then I should find the proofs
easily enough”
- Riemann

Introduction

Calculus originated to solve mainly two geometric problems
: finding the tangent line to a curve and finding the area of aregion
under a curve. The first was studied by a limit process known as
differentiation (which we studied in Intermediate first year) and
the second by another limit process - integration - which we study
now.

Werecall from elementary calculus that to find the area of
theregion under the graph of a positive and continuous function
defined on [a, b], we subdivide the interval [a, b] into a finite number
of subintervals, say », the K subinterval having length Ax »and

we consider sums of the form 2 f@) Ax,, wherez, is some
k=1

pointin the & subinterval. Such a sum is an approximation to the
area by means ofthe sum of the areas of rectangles. Suppose we
make subdivisions finer and finer. Itso happens that the sequence
ofthe corresponding sumstendstoalimitas 7 — oo, Thus, roughly
speaking, this is Riemann’s definition of the definite integeral

b
J. f(x)dx. (Aprecisedefinitionis given below).

a

JIntegrals

Bernhard Riemann
(1826-1866)

Bernhard Riemann was a
German mathematician who
made important contributions to
analysis and differential
geometry, some of them paving
the way for the later development
of general relativity. He was a
student of C.F. Gauss.
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7.1 Definite integral as the limit of sum

We discussed in the earlier chapter that indefinite integration is an inverse process of differentiation. We
recall that, if f'is the derivative of F, then _[ f(x) dx = F(x)+c, where cisareal constant. Inthis case, Fis
calledaprimitive of £.

Now to define the definite integral, we need the following :

7.1.1 Definition (Partition)

Let a,b €R be suchthat a<b. Then, afinite set P = {xy, x|, ..., X; 15 Xpp Xpigo voes Xy of
elements of [a, b] is said to be apartition of [a,b] if a=x,<x;<..<x_; <x;<x;;<..<

X, < Xx,= b.

n—1

7.1.2 Definition (Norm)

If P = {xy, x|, ...,X,} is a partition of [a, b], then the norm of the partition P, denoted by ||P||, is
defined by ||P|| = max {x; —xq, X, =X, c0s X, = X,,_ }-
We denote the length of the subinterval [x,_,, x;] by Ax; so that Ax;=x,—x,_,. We denote the set of
all partitions of [a, b] by Aa, b]).

i.e., Ala,b])={P:Pisapartitionof [a, b]}.

7.1.3 Definition (Definite integral)

Let f:[a,b] — R be a bounded function (that is, there is a real number M such that | f(x)| <M

Jor all x in [a,b]). Let P= {x;,x,, o) B S s X, 1, X,} beapartition of [a, b], and let
n

t€ [x;_y,x)), fori=1,2,...,n. Asumoftheform S(P,f)= Zf(ti)Axi is called a ‘Riemann sum’

i=1
of f relative to P.

We say that fis ‘Riemann integrable on [a, b, if there exists a real number A such that S(P, ")
approaches A as ||P|| approaches zero. In other words, given € >0, there is a 8 > 0 such that
IS(P, f)—A| <€ forany partition P of [a,b]with ||P| <& irrespective of the choice of t, in

b b
[x,_y» x;]. Such an A, if exists, is unique and is denote by J. f(x)dx. Wecall * '[ f(x) dx’, the
a

a
‘definite integral of f fromato b, ‘a’is called the ‘lower limit’ and ‘b’is called the ‘upper limit’
of the integral.
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b
The function fin I f(x) dx iscalledthe ‘integrand’. Here we observe that the numerical value of

a

b
I f(x) dx depends on fand does not dependent on the symbol x. The letter “x ”is a “dummy symbol” and

may bereplaced by any other convenient symbol.

b
Supposethat [ f(x) dxexists on [a,b]. Then forevery choice of 7, € [x,_;, x|

n b
Y (i —xip) () =SP.f) = [ £(x) dx as [P —0.
i=1 g

b n
1.e., the Riemann integral ff(x) dx isthelimitofthesum S(P, f) = Z(Xi -x_,) f()as|P]| =0.

i=1
In this way, we can regard definite integral as the limit of a sum.

Hereafter, we briefly use the word ‘integrable’ for the phrase ‘Riemann integrable’.

We assume the following theorems without proof for our further discussion.

b
7.1.4 Theorem: If f:[a, b] — R is continuous, then ff(x) dx exists.

7.1.5 Theorem : If f: [a, b] — R is continuous, then there exist real numbers p and q in [a, b] such that

Ap) <fix)< f(q) forallxin|a, b].
7.2 Interpretation of definite integral as an area

Let f:[a, b] — [0, « ) be continuous. Let P = {x,, x,,...,x,} bea partition of [a, b]. Since f is
continuouson [a, b], foreach i€ {1,2,...,n}, there exist P9, in[x,_;,x,;]suchthat

fp) <f(< f(g,) forallz€ [x_;,x]. (Theorem7.1.5).

Let SI(P’ f) = 2 f(Pi)(Xi _xi—l) f(q,')'- \/\//\/
i=1

and S,(P, f)= Y f(g)(x—xy).
i=1
Here f(p;) (x;— x;_;) is the area of the

rectangle bounded by the lines x =x,_;, x = x;,

y=0andy=f(p,). Similarly, f(g,) (x;—x,_,) isthe | |
area of the rectangle bounded by the lines x=x;_,, a X ;'7,. 4 X

x=x;,y=0andy=f(q;) (SeeFig.7.1). Fig.7.1

o~
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Since f(p,) < f(1) < f(q,) forall 7€ [x,_,,x,], itfollows thatthe curve y = f(x), (x;_; < x< x,) lies
betweenthe linesy=£(p;) and y=/(q,). Hence the area below the curve y =f(x), (x,_;<x<x;), (thatis,
theareabounded by the linesx=x,_;, x=x,,y=0and the curve y=/(x)) lies between f(p,) (x,—x,_;) and f(g,)

(x;—x,_;). Hence

n n n
2 f(p)Ax; < 2 (areabelow the curvey =f{x) over [x,_|, x,]) < 2 f(g;)Ax; .
i=1 i=1 i=1

Thatis,

S,(P, /') <areabelow the curve y=f{(x) over the interval [a, b] <S,(P,f"). .. (1)

b
Since f is continuous on [a, b], J- f (%) dx exists (Theorem 7.1.4), and under the usual notation,

a

b b
S(P, f) — If(x) dx as||P|| —0. Hence, both S,(P, /) and S,(P, /') approach If(x) dx as||P|| = 0.
Since the inequality (1) is true for all partitions Pof[a, b],andboth S, (P, / )aand S,(P,f)tendto

b
[ £(x) dx as|[P|| 0, it follows that

b
_[ f(x) dx =areabelow the curve y=£x), a <x < b, the ordinates x = a, x = b and the X-axis.

a
b

Thus definite integral I f (x) dx ofanonnegative function f'on[a, b] canbe interpreted as the area of the

a

region bounded by the curve y=/(x) and the lines x=a, x = b and the X-axis.

n
Since ¢, € [x,_;,x,],achoiceof 7, isx;_, inwhich case we get the sum 2 F(x;_)(x; —x;_;) . Another
i=1
n b
choiceof #; isx;inwhich casethesumis 2 f(x)(x; —x,_). Therefore _[ f(x) dx canberegarded asthe
a

i=1

limit of the sum 2 S D —x;y) or 2 S )X —x_p).

i=1 i=1

. . 12 -1 | . .. .
7.2.1 Note : If f is continuous on [0, 1] and P = {O,—,—,....,n—,l} is a partition of [0, 1] inton
nn n
subintervals each of length P then from the above discussion, it follows that

p 1y (i
{f(x) dx = ,}ﬂ;;f(ﬁj . - 2)

More generally, if f'is continuous on [0, p] where p is apositive integer then



Definite Integrals | 265

T C1& (i
'([f(x) dx = ,}Eﬂi;;f(ﬁj- ..(3)
b
7.2.2 Example : Letus find Jf(x) dx ,where f(x)=x in[a, b] as the limit ofa sum.
We define f: [a, b)] — R by f(x)=x, x € [a, b].

LetP = {a, a+ b-a ,a+ 2b-a) yeres At nb-a) = b} be a partition of [a, b] into n subintervals so

n n n

(b —
=a+l( a),i=12 ., n.Wetake t; = XT-i—’Hence
n

that IIP|| =

2 2
—X; 1
SP.f)= Y f6)Ax = Z(X’ lz”joc —x_)= 2% -0,
i=1 i=1

Hence

b "
[ £@x) dx = 1im Y £e)Ax, = %(b2 ~d®)
a =l

2
7.2.3 Example : We find '[(xz +1) dx asthe limit ofa sum.

0
Here we use the formula (3) of Note 7.2.1 withp=2 and f(x) =x*+ 1, x € [0,2]. We observe that

fiscontinuous on [0, 2]. Now

j(x +1) dx = lim — Ef(ij
n

n—eo 1l

(nJ +1+H e {2
g R R

2 2 2
1124224420 +2n}

= lim — 5
n—e n n
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= limis(12+22+---+(2n)2)+2
n—en

_ lim%{Zn(2n+1)(4n+l)}_2
n—eo 1y 6

= liml(2+l)(4+l)+2
n—eo 3 n n
3 3

2
7.2.4 Example : We evaluate fex dx asthelimitofasum.
0

Onusing the formula (3) of Note 7.2.1 withp=2 and f(x) =¢e*,x € [0,2] we have

2 1 np i 1 2n L
Iex dx = lim—Zf —| = lim—Ze”
0 noeltsp N\ noen s
1
N 2 2n . en 1 21-1
=lim—|e*+e"+...4+e" | = lim —|l+e" +...4e "
n—eo n n—e N

L on }l 2
n n 1
—lme (e? l_le{e1 }
noee N en —] noee | en —1
lim /" (e® - 1)
n—>o0

I
Q

o

|
—_

n—>o0 n—o| 1/n

S e -1
(since lim e” =1and lim =1)

7.2.5 Example : Letusdefine /:[0,1] —Rby

1, if x is rational

o |

0, if xis irrational.

We show that f is not integrable on [0, 1].
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LetP= {xy,x,,...,x,} beapartitionof[0, 1]. Weknow thatbetween any two real numbers there liesa
rational number, and also an irrational number. Foreachi=1,2, ..., n,choose #,s.in [x,_,,x,] suchthatzisa

rational number and s ; isanirrational number.

Let S;(P, f) = zn:f(ti)Axi and S,(P, f) = if(si)Axi . Since f(z)=1and f(s;) =0, we have
S,(P.f)=1and Sy(P,/)=0. =
Hence S,(P,f) — 1as||P|| - 0 and S,(P,f) — 0 as||P|| — 0.

Hence lim S(P, f) doesnotexist. Thus fisnot Riemann integrable on [0, 1].

1
[IPll—0
7.2.6 Definite integral as an area function

b
Let f:[a,b] = Rbecontinuous and f(x) >0 forall xin [a, b]. Inthis section, we define f f(x) dx as

the area ofthe region bounded by the curve y =£(x), the ordinates x=a and x=band X-axis.
AY

Letxbeapointin [a, b]. Then J. f(@) dt @
ﬂ z

represents the area of the shaded raegion in
Fig.7.2. Thearea of this shaded region depends
upon the value ofx so that this shaded region is a
function of x. We denote this functionby A(x) X’ ¢ >X

A(x)

and call A as ‘Area function’, and it is given by a * b
X

A= [ () dr. NG
a Fig.7.2

We state without proof the following theorem which gives an important property of Area function.
7.2.7 Theorem (First Fundamental theorem of integral calculus) : Let / be integrable on [a, b]. We

X
write A(x)= j f () dt, x €[a,b]. ThenAis continuous on [a, b]. If / is continuous on [a, b] then Ais

a

differentiable in [a, b]. Further, A’(x)=f(x) forallx €[a, b].
Exercise 7(a)

I. Evaluatethe following integrals as limit ofa sum

1. j(x+1)dx 2. }xz dx
0 0
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II. Evaluatethe following integrals as limit ofa sum

4 1
L[ ete®) ax 2. [ (x=x) dx
0 0

7.3 The Fundamental Theorem of Integral Calculus

Inthe evaluation of definite integral, the following ‘Fundamental Theorem of Integral Calculus’ is useful.
This theorem is also known as ‘Second Fundamental Theorem of Integral Calculus’.

This important theorem is stated without proof. You will learn its proofin higher classes.

7.3.1 Theorem : If f is integrable ona, b] and if there is a differentiable function F on [a, b] such that
b
F =/ then [ f(x) dx = F(b)-F(a).
7.3.2 Note : We write [F(x)]l; for F(b) — F(a) . [F(x)]l; is not dependent on x. Also, we write
Fl, = -[Fwl;.
7.3.3 Solved Problems
2
1. Problem : Evaluate J. Xdx.
1

6
X

6
isaprimitive of fon[1,2]. Hence, fromthe Fundamental theorem ofintegral Calculus (Theorem 7.3.1), we

Solution : f(x)=x"is continuous on[1,2] and hence integrable on[1,2] (Theorem 7.1.4). Also, F(x) =

have

2 2 26 1
2 dx = [ f0dx = FQ2) - Fl) = ——— = 63 _21
1 1 6 6 6 2

We note that in the definite integrals that we deal with hereafter in this book, the integrands are invariably

b
continuous functions on their domains of integration and hence are integrable. Soto evaluate I f(x) dx fora

a

given function f'on[a, b], we finda primitive, say F, of fon[a, b] (i.e., we find the indefinite integral _[ f(x) dx)

b
and find F(b)—F(a) whichis equalto [ £(x) dx.
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T
2. Problem : Evaluate J.sinx dx .
0

T
T
Solution : fsin x dx = [-cos x] (since —cosxisaprimitive of sin x)
0
0

= —cosT — (—cos0)

=—-(-DH—-(-1=2.
T dx
3. Problem : Evaluate _[ AR
VX ta
Solution:J‘ zdx - = Lt X
0X +a a a o

_1 1y —Tanloy ] = L (B2 ™
- a[Tan (1) - Tan (0)] =~ (0=
7.4 Properties

We now discuss certain properties of definite integrals.

7.4.1 Definition

Let f:[a, b] — R be integrable on [a, b]. Then, we define f f(x) dx as the negative of
b

b c
f f(x) dx, and, for any cin|a, b], J. f(x) dx as zero. Thus
a C

a b a
[ o) dx =] Fx) ax, [ () dx=0 and j.f(x) dx =0.
b a a b

We state without proof, Theorems 7.4.2 to 7.4.5 which will be used in the subsequent development of the

theory and in solving problems.

7.4.2 Theorem : Suppose that fand g are integrable on [a, b]. Then
() f+gisintegrableon|a,b] and

b b b
[r+o)@dr = [fo)de+ [g)dv.
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(i) foranya € R,o.f is integrable on [a, b] and
b b
[af)@ dx =a [ f(x) ax.

7.4.3 Theorem : Let f: [a, b] = R be bounded. Let c € (a,b). Then f is integrable on |[a, b] ifand

only ifitis integrable on [a, c] as well as on [c, b] and, in this case,
b c b
[Foax = [feodx + [f(x)ax.

7.4.4 Theorem : If f:[a, b] = R is continuous, then f([a, b)) is a closed and bounded interval in R.

7.4.5 Theorem (Method of Substitution) : Letg : [c,d] — R have continuous derivative on|c,d]. Let
f:g([c,d]) — R be continuous. Then (fog) 8" is integrable on [c, d] and

g(d) d
Fodr = [fg(x)g'(x)dx.
g(c) c
Proof': Since g is differentiable in [c, d], itis continuous therein. Hence by Theorem 7.4.4, g([c,d]) isaclosed

and bounded interval of the real line, say, [, 3]. Define F on [, B] as F(¢)= j. f (s) ds forallze [o, B]. Then
F is well defined and continuous. Further, it is differentiable on [o, ], ;nd F($)=f(¢) forall tin [o, B]
(Theorem 7.2.7).
Since F is differentiable in [, B], g is differentiablein [c, d] and g([c, d]) =[c, B], it follows that Fog is
adifferentiable functionon [c,d] and
(Fog) = (Fog)8" =(fog)§.
Hence Fogisaprimitive of (fog) 8 " on [c,d]. Since f'is continuous on [, B] and & ’is continuous on

[c,d]itfollows that (fog) & " is continuous on [c,d]. Hence (fog) 8 " s integrable on [¢,d] (Theorem 7.1.4).
Now, from the fundamental theorem of integral calculus (Theorem 7.3.1), it follows that

d
f((fog)g') (x)dx =(Fog)(d)~—(Fog)(c).

d
Thatis, ff(g(X))g'(X) dx = F(g(d)) —F(g(c))
¢ ¢(d) 2(c)
= [ foyd - [ aw)a
g(d)

= [ f@)dr (byDefinition7.4.1and Theorem7.4.3).
g(c)
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7.4.6 Note : Theorem 7.4.5 remains valid if the continuity of fon g([ ¢, d]) is replaced by the integrability of f
ong([c,d]). The proofofthe theorem in this general form is beyond the scope of this book.

7.4.7 Solved Problems

4
1. Problem : Evaluate _[x x> -1 dx.
1

Solution : Defineg: [1,4] — Rby g(x)=x2—1. Clearly gis differentiable, & is continuousin [1,4] and

g'(x)=2x. Wehave g([1,4])=[0, 15]. Define 7:[0,15] -»R by f(1)=4/t. Then f is continuous on
[0, 15]. Hence from Theorem 7.4.5, we have

g4
jf(g(x)) gwdr= [ f@ adr.

g

ie., jzx | dx—lfx[dt
0

15
4 3 3
ie., 2jx JxZ-1 dx=[§ t2] =§(15)2.
1
0

3
Thus j 1 dx= = (15)2

The above problem is worked out in a simple way as follows. Usually we adopt this formal procedure in
evaluating such integrals.

Put x2-1=t Then 2x dx=dt.
When x=1,¢=0; when x=4, r=15.

Hence .[x x?-1 dx = lf— dt =
0
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When we integrate a function by expressing the given variable in terms of anew variable it is sometimes

difficultto translate the result back into the original variable. But, when integrating between limits, we may avoid

the process of restoring the original variable by changing the limits corresponding to the new variable. This

processisillustrated in the following problem.

2
2. Problem : Evaluate J.\/4—x2 dx.
0

T
Solution : Define g on [0, 5} as g(0) = 2 sin 6. Then g has continuous derivative,

8'(0)=2cosO V 0 6[0, g}, 2(0)=0, g[g): 2 and g[[o, ED: [0, 2]. Define f on [0,2]as

fAx)= Va-x* V xe [0, 2]. Then fis continuous on [0, 2]. Hence by Theorem 7.4.5, it follows that

T
(fog) &’ isintegrable on {0 } and

ie.,

We have

Hence

Hence, from (1),

)
HE)) .
[ F@yax =] rz®) g'(0) ao.
g(0) 0
2 5
j 4—x2 dx :J~«/4—4sin29 .2c0s0 do.
0 0

J4-4sin?0 = /4 cos>0 = 2c0s0 V Oe [o, ﬂ

T

2
\/4—4sin29 .2cos0 d6=f4cos26d6
’ n
2
4J- (1+cos ZBJ 40
2
0
. n
_ 2{e+sm26}2
2

0

S —a

4-x* dx=Tm.

O —

(D)
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The above problem is usually worked out in a formal way by substituting x=2sin6 (0 < 8 < g),

replacing dx by 2 cos 0 dB in the given integral and by taking the lower and upper limits in the integral so obtained

i i
as 0 and — respectively, sincex=0 when 6 = 0, x=2 when0 = — and x€ [0, 2] when Q¢ {O, g}

2 2
1
6 3
X
3. Problem : Evaluate J. T dx.
O1+x2

Solution : Put x=#*. Then dx =42 dt. Also, whent=0,x=0; whens=2, x=16; whenx € [0, 16],
t€10,2]. Hence
1

16 g 2, 2 |
f 1dx:f 2.4t3dt. :4.|'r2—1+ > | ar
0 5 01‘” 0 1+¢

14 x2

3 2 23
4{——t+Tan_1t} = 4|2 —2+Tan12
3 3
0
4 (2+Tan_12).
3
n
2

4. Problem : Evaluate I sin | x| dx.
T

2
Solution : We have

in] x| sin(—x), if x<0
sin|x| =1 . .
sin x, if x=0.
K

2
sin | x| dx = Isin|x|dx+ _[sin|x|dx
0

Hence

ol o

n
2 0

sin (—x) dx+.|.sinxdx = .[—sinxdx+
0 T

sin x dx

O —a

2 2

£

0 7
= [cosx] +[-cosx]* =1-0-0+1= 2.

T

2
We now prove the following theorems by using the method of substitution in its general form.

(=]
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7.4.8 Theorem : Let f be integrable on [a, b]. Then the function h, defined on [a, b] as
h(x)= fla+b —x)forallxin|a, b], is integrable on|a, b] and

b b
Ih(x) dx :Jf(x) dx.

Proof : Define g on [a, b] by g(x) =a+ b — x. Then h=fog, g’ (x)=-1, gla)=>b, g(b)=a and
g([a,b]) =[a, b].

FromNote 7.4.6, it follows that (fog) g” is integrable on [a, b] and

h g(b)
[reengmax= | @ a.
a g(a)
b a

ie., [fla+b—x) (1) dx =] f@) ar.
a b

b a
i —[fla+b-x)dx=[f@)dr.
u b

b a
Hence [fla+b—x)yax=—=[rf@)dr
a b

b
= [ f(®) dt (byDefinition 7.4.1).

7.4.9 Corollary : If f is integrable on [0, al, then the function h defined on [0, a] as h(x)=f(a —x)

forallx in [0, a] is integrable on [0, a] and
[ fla=x) dx = [h(x)dx = [ f(x)dx.
0 0 0

Proof: Follows from Theorem 7.4.8 by replacing ‘a’ by ‘0’ and ‘b’ by ‘a’.

7.4.10 Theorem : Let f:[-a,a] —R be integrable on [0, a). Suppose that f is either odd or even.
Then f isintegrable on [—a, a] and

0, if fisodd

_ja TS0 pw as i £ is even.
0
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Proof: Define g: [—a, 0] — [0, a] as g(x) =—xforall xin [—a, 0]. Then ghas continuous derivative on
[-a,0]and g’ (x)=-1forallxin[-a,0].

Case (i) : f isodd.

Then J&) = ~f(=x) = ~(fog) (x)
= ((fog) g )(x) V¥ x€ [-a,0].

Hence, from Note 7.4.6, it follows that f'is integrable on [—a, 0] and

0 0
[ reodx = [ ((fog)g"(x) ax

g(0) 0 a
= [ —fendi=[f@ar =-[ra.
g(-a) a 0

Hence f'is integrable on [—a,a] and

a 0 a
J-f(x) dx = .[f(x) dx +J.f(x) dx
-a —-a 0

= —'Tf(x) dx + _Tf(x) dx=0.
0 0

Case(ii): f iseven.
Then f(x) = f(—x)=(fog) (x) = — ((fog)g’) (x) forallx in[—a,0]. Hence, from Note 7.4.6, it follows that
fisintegrable on [—a, 0] and

0 0
[ fx)dx == [((fog)g) (x) dx

¢(0) 0 a
= [-fdi=-[fw0yd =[f@war.
° !

g(-a)

Hence f isintegrable on [—a, a] and

a 0 a
_[f(x)dx = ff(x)dx + _[f(x)dx
-a —-a 0

= Tf(x)dx + jlf(x)dx = Z]I.f(x)dx.
0 0 0
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7.4.11 Theorem : Let f:[0,2a] — R beintegrable on |0, a.
(1) If fQRa—x) = f(x) for all x in [a,2a] then f is integrable on [0, 2a] and

2a a
j Fx)dx = 2 j f(x)dx.
0 0
(1) If f(Qa—x)= —f(x) forall x in|a,2a], then f is integrable on [0, 2a] and
2a
[ Fdx = o.
0

Proof: Define gon [a,2a] as g(x)=(2a—x) forall x in [a, 2a]. Thenghas continuous derivative, g’(x) = -1
forallxin[a,2a), g(a)=a, g(2a)=0and g([a,2a])=[0, a]. Hence, from Note 7.4.6, it follows that ((fog) g”)
isintegrableon[a,2a] and

g(2a) 2a
[ rwyar = [((fog)g"(x) ax. (1)
g(a) a
We have (fog) g’=—(fog) on [a,2a].

Since (fog) & isintergrableon[a,2a], 8 =—1, it followsthat fogisalsointegrableon [a,2a]. Wehave
(fog) (x) = f(g(x)) =f(2a—x) forall x [, 2a].
(1) Supposethatf(2a—x)=f(x)forall x € [a, 2a]. Then
f = fogon [a,2al].

Hence f is integrable on [a, 2a] and

2a 2a 2a
[ reodx = [ (fog)(x) dx == [ (fog)g") (x) dx

g(2a)

=- ] roa (from (1))

g(a)

0 a
~[r@yar = [rwar.

a 0
Hence f'is integrable on [0, 2a] and

2a a 2a a
[y ax =[ rdx + [ fode=2[ fooax.
0 0 a 0
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(i) Supposethat f(2a—x) = — f(x) V x€ [a, 2a]. Thenitcanbeshown asabove that f isintegrable
on [a,2a] and that

2a a
[reyax=-[raa
Hence f'isintegrable on [0, 2a] and

2a a 2a
[foodx=[fede+ [ fax=o.
0 0 a

We state the following theorem without proof.

7.4.12 Theorem : If fandg are integrable functions on [a, b], then their product fg is integrable on
[a, b].
7.4.13 Theorem (Integration by parts formula)

Let u andv be real valued differentiable functions on [a, b] such that W' and V' are integrable on

[a,b]. Thenuv' and u’v are integrable on [a, b] and

b b b
[y dx = [@) ] = [@v)x) dx
b b

Thatis, fu(x) Vi(x) dx = u)v(b) — u(a)v(a) —Iu'(x) v(x) dx.

Proof': Since #and vare differentiable on [a, b], they are continuous on [«, b] and hence they are integrable on
[a, b]. Weknow that the product of two integrable functions is integrable (Theorem 7.4.12). Sincew, v, #” and

. 4
v’ areintegrable on [a, b],soareu v and u’v.

Since both u and v are differentiable on [a, b], uvis differentiable on [a, b] and (uv) = uv’'+u'v.

Since V" and u’ vare integrable on [a, b],soisuV" + 1’ v= (uv) and
b b b
f(uv)'(x) dx = J(uv')(x) dx+ I(u'v)(x) dx. (D)
Fromthe fundamental theorem of integral calculus, (Theorem 7.3.1), it follows that
b
[y dx =) ()= @v) (a). -2
From (1)and (2), wehave

b b b
[y ydx =[ux) vx)] -] @) (x)dx.
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7.4.14 Solved Problems

T
2

1. Problem : Show that Isin”x dx = | cos"x dx.
0

S —N

Solution : Suppose that f(x)=sin”x. Then

FG-x) = sin"(G-x)

cos” x.

(ST}

Now,

%
sin” x dx = ff(x) dx = Jf[g—xj dx
0

S 03

cos" x dx.  (byCorollary7.4.9)

oc—wma o

5

n
2. Problem : Evaluate TSCLZS dx
%§in2x+cos2x
s :
Solution:Let  f(x) = 5c052 * - and A = If(x) dx.
0

sin? x+cos? x
n T

2 2
By Corollary 7.4.9,wehave A = If(x) dx = If (g—xj dx
0 0

5

. 5
> 2 (T _ )
2 cos X
-] 5
5 - 5 -
0sin? (—x)+cos2 (—x)
2 2
n 5 T 5
2 5 2 .5
cos? x sin? x
Hen 2A =j f
ence 3 3 dx + 3 3
0sin2 x+cos? x 0sin2 x+cos? x
T 5 5 o
2cos2 x+sin2 x Z T
= j dx = jdx =2,
5 5 2
0sin? x+cos? x 0

S —ja

Mathematics - IIB

S5 5
sin2 x+cos? x
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2 2
COS“ x v
Hence A = I < < dx:Z,
0sin2 x+cos? x
bl
2
X 8
3. Problem : Show that J.— dx = ——
o SIn X +cosx 2\/5
n
2 b
Solution: Let A = I— dx.
[ Sinx+cos x

b1 T
2 E—X
Then A= I dx
n T
0sin| ——x [+cos| ——x
T
% E—X
- dx. llary 7.4.
'gsinx+cosx (by Corollary 7.4.9)
b
Hence 2A = j’ X + %—X I
0 sinx+cosx sinx+cosx
s
_ ETL.
2 ;) sinx+cosx
s
Hence A = ETL
4 7, sinx+cosx
1 . 2t _ 2
Put 7= tanf. Then dt = — sec2£ dx, sin x = ——, cosx = and Seczfz 1+ 72
? 2 2 ! 1+17°
When x=0, 7=0and when x=§’ t=1. Thus
2 1secZf 1
A=§‘[ 2 21 dx:gf 2dt2
O(Sinx+cos)c)(2sec2;) 02t +1-t

gj dt
41 (2)P =@ -1)?

279
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\/_+l‘ 1:| _ T 1 \/5—1
S+l 42 Og(\/iHJ

V2+1 _m
3_ 5 = m1og(\/§+1).

El
22\/_

ﬂSlle dx
w/SlIlX+«/COSX .

T
Solution : Let Adenote the value of the given integral. Put X = 57 . Thendx=—dt. When x = %’ t= g

4. Problem : Evaluate

aQ —— w3

b

m s
when x ==, ¢t ==. Hence
3 6

dx =—
\/sinx +\/cosx

n . (m
- 3 sin| ——t¢
\/sin x I 2
yis
3

>
Il
Q —wa

\Jcost
\/cost +4/sint

\cos x
A\ COs x ++/sin x

dt =

1]
QR ——wa

R —— w3
&

b o
3 \/sin x 3 \/COS X
Thus 2A = I _ dx+'[ - dx
7 Vsinx ++/cos x s vVsin x ++/cos x
6 6
o n n
2 A/sin x ++/cos x 2 3 T
='[ ' dx=jdx=[x] = —.
s Vsin x ++/cos x o n 6
r r 6
6 6
H A T
ence = —,
12

5. Problem : Find .[ (x2 +\/a2 —x? ) dx.

—a

Solution : Wehave

_T(x2+\/a2—x2)dx = j.xz dx+j£\/a2—x2 dx.
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Since x?and /42 — 4 areeven functions, by Theorem 7.4.10, we have

.szdx =2 ]{xz dx ; jﬂ a’—x* dx = 2]E a® —x* dx.

Therefore

]i(x2+\/a2—x2)dx = Zsz dx +2]1. a’—x% dx
-a 0 0

3 a 2
0 0
3 2 2
P, :ga3+ni.
3 2 2 3 2
6. Problem : Evaluate f X sin x dx.
+smx
T xsinx
Solution : Let A:I — dx.
0 1+sinx
T .
Then A=J (n x). sin(z - x) dx (byCorollary 7.4.9)
0 1+ sin(mt—x)
_]T- (T—x) sinxdx
0 1+sinx
T xsinx T (m—x) sinx
Hence 2A:J. —dx + | ———— dx
0 1+sinx 0 1+sinx
_ f [x+(n-x]sinx “T sin x
0 1+sinx 0 1+s1nx
T T T
:nml_ ! j } war-nf—a
0 I+sinx 0 o1 +sinx
I
:nz—nf 1 dx.

281

(D
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Letusnow evaluate I dx.

1+sinx

Since sin (1 —x) = sinx, by Theorem 7.4.11 (i) it follows that

T E
'([1+s1nx - 2'[ 1+smx

0
n
2
=2f ————ax (by Corollary 7.4.9)
0

m_
1+sm(2 )

- (2)

1]
S 03
w
(€]
¢}
(o)
I
=
1]
| —
[\
8
=
I
L
g
[\e]
1]
[\

Hence, from(1)and (2), 2A = n?-2m and A = %—n.

7.Problem : Evaluate | x sinx dx.

O =0

Solution : Let u(x)=x and v(x)=-cosx. Then u’ (x)=1; V' (x) =sinx.

Using the formula for integration by parts (7.4.13), we have

T n

3 2 2
Ix sinxdx = _[x (—cosx) dx = fu(x) V(x) dx
0 0 0
T 5
= [u(x) v()c)]0 —Iu'(x) v(x) dx
0
T3
= [-x cos x] I( cos x)dx
o %

il

cos x dx = [sin x]2 =

S —a
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8. Problem : Evaluate lim 2 [ } by using the method of finding definite integral as the
n

n—eo 7 n+i

limit of a sum.
1 i 1
oL 1-x
Pl
=L I+ —] 0
n

Solution : hmZ [

n—»co . ll’l n+i

1-
by using the formula (2) of Note 7.2.1 with f(x) = 1+_x, x€[0,1].
X

Now

jx+1—2

1 1
1
. dx = j([ dx + 2£mdx (by Theorem 7.4.2)

I1+x

1
:.{xﬁ)+2hu1+xﬂ0 (by Theorem 7.3.1)

=—-1+2In2.

k k k
9. Problem : Evaluate lim 2 +47+6 +..+0n) by using the method of finding definite integral

o Lk
as the limit of a sum.
B Y GV (i)
Solution : lim =lim—) 2
lim pres lim — §5

= j.kak dx,

by using the formula (2) of Note 7.2.1 with f{x)=2%*, x € [0, 1], kisafixed real numbernotequalto—1.

Now

1 1
0 k+1 0 k+1

Hence

A L RN G ) L
lim = .
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10. Problem : Evaluate lim || 1+ l 1+ g ..... 1+ 20
n—yoo n n n
. ) 1 2 n)|n
Solution: Let lim || 14— | 1+= |..... I+= || =I-
n—yoo n n n

Then

1 i
In/= r}l_{r; o 2 In (1 + ;j , since logarithmic function is continuous. Now by using (2) of Note 7.2.1 with
i=1

f(x)=In(1+x),xe[0, 1], we get

. . 1
lim 121n(1+i) = [In(1+x)dx
0

e n

= [(1+x) In(1+x)—(1+ x)]l0
=21n2-2-(-1)
=In4-1.

Hence
In/=n4-1.

ie, [=elM1=4¢71

11. Problem : Let f: R— R be a continuous periodic function and T be the period of it. Then

prove that for any positive integer n,
nT T
[ F@)dx = n[ fx) ax. (D)
0 0

Solution : Let k be an integer and define

g: [kT,(k+1)T] — [0, T] asg(f)=¢t—kT. Then g’(z) =1 forall ze [kT, (k+ 1)T].
Hence by Theorem 7.4.5, (fog) g’ is integrable on [T, (k+ 1)T] and

(k+D)T T
F(e@) g'() dt = [ fx) dx. Q)
kT 0
Wehave flg®) g'(t)= f(z—kT) . 1= f(),

since f'is periodic with T as the period.
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(k+DT (k+DT
Hence j f(g(0) g'@t) dt = j f(t) at. .. (3)
kT kT
Thus, from (2)and (3),
(k+D)T

kT

T
f@yde = [ f@) ar.
0

Letusnow prove formula (1) by using the principle of mathematical induction.

For n=1, clearly(1)istrue.

Assume (1)istrue for apositive integer m.

mT T
Thus J.f(x)dx=m'|.f(x)dx.
0 0
Now, by Theorem 7.4.3 and by (4) and (5), we get
(m+)T mT (m+)T
I f(x)dx = J. f(x) dx+ '[ f(x) dx
0 0 mT
T T
= mff(x) dx+_[f(x) dx
0 0

T
(m+1) [ f(x) dx.
0

Hence formula (1) istrue for n =m+1.

Thus, formula (1) is true for any positive integer #, by the principle of mathematical induction.

7.4.15 Note : Formula (1) of Problem 7.4.14(11) is valid for any integer n. Further, it remains valid ifthe
continuity of /' onRisreplaced by integrability on [0, T], in view of Note 7.4.6.

Exercise 7(b)

I. Evaluatethe following definite integrals

a 3 T

1. J.(azx—x3) dx 2. J. 2x2 dx 3. J. mde
0 2 1+x 0
b > %

4. _[Sin3xcos3xdx 5. J'|1—x|dx 6 I Cosxdx
0 0 1+e*
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10. dx

—_ w
=

0o VxZ+16

II. Evaluatethe following integrals.

8. | Wa-vmias
0

_ .2
xe " dx

1
1.
0

4 2 2 2
X X
—dx dx
1. £1+x R
% 4
4. Ixzsinxdx 5. f|2—x|dx
0 0
Y1
7. Z sin2x—cos2xd
.[ 3 3 X
o Sin” x+cos” x
Evaluate the following limits
. o An+l+Vn+24. . +n+n
8. lim 9.
e i
10. liml tanE+tan£+...+tanﬂ 11.
n—e N n 4n 4n
L I
12. lim 13.
n—ee ,z:;nz+i2
1
1 22 n? ||
14, Iim||1+— || 1+— |..... 1+— 15.

III. Evaluatethe following integrals.

1
2

1. JL
0 4+5cosx
1
2 . -1

3 J‘XSln xdx
0 \/1—)62

Mathematics - IIB

s
2
9. jsec46d6
0
5
d
2. [—=
L V2x -1
1 2
X
dx
3 £x2+1
T
6. j— sin® x i
0 sin® x +cos’ x

. [ 1 1 1}
lim| —+ +..+—
n—e|l n+l n+2 6n

lim 2 2
n—oo i=11 +n

1+2% +3* + . +n*

lim )
n—oo n
| 1
. nhHn"
lim (n))
n—e n

b
2. j Jx—a) (b-x) dx

sin x + cos x

=
o —rh

— dx
9+16 sin2x
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n 2
2 .
5 J- a51'nx+b cosx .. 6. I x(a—-x)" dx 7. J. XN2—=x dx
, sinx+cosx 0 0
T T b -3
. 3 X xsin” x
xsin” x dx dx —— dx
8. ZI; o { 1+sinx 10. J). 1+cos® x
L log(l+x) T xsinx p sin? x
1L [ === dx 12. [ ——— 13. f—dx
o 1+x? o 1+cos’ x , COsXx+sinx
n 3
n 1 p 4 2
14. _([m X 15. Ilog(l+tanx) dx 16. “xsin T£x| dx
0 -1
1 1 . .
17. [sin™ 2 Vi 18. [x Tan"'x dx 19. [ gy
0 I+x o1+ cos® x

20. Supposethat /: R — Risacontinuous periodic function and T is the period of it.

a+nT a+T

Leta € R. Then prove that for any positive integer 7, J- f(x)dx = n J. f(x) dx.

a a

7.5 Reduction Formulae

In this section, we derive some reduction formulae for the evaluation of definite integrals of sin”x, cosx

s
and sin”x cos”x between 0 and B for positive integers m, n.

The following theorem gives a useful formula to evaluate the definite integral of sin”x between 0 and =

whennisaninteger>2.

7.5.1 Theorem : Let n be an integer greater than or equal to 2. Then

T n-1 n-3 1 m . .

2 —_— ceee— - —, if nis even.

J.sin”xdxz nl n_§ ; 2

0 L R if nis odd.
n n-—-2 3

Proof: Onusing the formula for integration by parts (Theorem 7.4.13), we have

K

sin" ! x .sinx dx = Isin

0

1y a4 (—cos x) dx
dx

sin” xdx =

O =3
O =3
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n
. 2

= [sin”‘ X (—cosx)} +
0

S0

0+ (n—1) [sin”? x(1-sin® x)dx

S0

sin" 2 x—(n-1) [sin” x dx.

(n-1)

S — 3
— 3

2

S
S—p0 a3
Se—ja o

Hence sin" xdx = (n—1) |sin"“ x dx.
T T
2 2
-1 _
Therefore Jsm" xdx = (n=1) Jsm" 2 x dx.
0 %
T
2
Hence if we write L= j sin” xdx, then from (1), wehave
0

In = n__l In—2'
n

This is the reduction formula.

Mathematics - IIB

(n—1) sin™ 2 x cos? x dx

(D

On applying successively, the formula for integration by parts to the right hand side integral, we get

n-1 . n—3

I = I_
n n l’l—2 n—4
_ n—l.n—3 -5 N
n n—2 -4
m/2
J. dx, if nis even
where A=1"°
n/2
j sin xdv, if n is odd
0

T . .
5, if n is even

1, if nis odd.
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- n—-1 n-3 1t . .
Z . --.—.—_if nis even
Therefore, we have Isin”xdx= n n-2 22
n-1 n-3 2 . .
0 —_— e —, if nis odd.
n n-2 3

7.5.2 Observation : Fromproblem 7.4.14(1), we have

1

2
sin” xdx = '[cos” xdx.
0

S 03

Therefore from Theorem 7.5.1, for an integer n > 2, we have

n n-1 n-3 1 . .
bl — 5 5y if nis even
J‘cos"xdx S n 3 5
0 A BT 20 if s odd.
n n—2 3
7.5.3 Solved Problems
n n n
2 2 2
LPmMamFMdmjg#xm: @njmﬂxm: mnjmﬁxm.
0 0 0

Solution: We solve (i) and (ii) by using Theorem 7.5.1.

n

2 — —
@) J.sin4xdx _4-1 4-3 =n
) 4 4-2 2
3 1 = 3
= — = . — = —TT.
4 2 2 16
%
G [sin"xax =112 72
! 7 7-2 7-4
_6 4 2_16
7 5 3 35

We solve (iii) by using Observation 7.5.2.

T
(i Tamsxdx= 8-1 8-3 8-5 8-7 =
. § 8-2 8-4 8-6 2
7531 m
=222l
35

289
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2. Problem : Evaluate I\/dz - x% dx.
0

Solution : Put x=asin®. Thendx=a cos 0 d0. When 6 =0, x=0and when g= T x=a When

9

2
0e {O, g} x€ [0, a]. Hence, by the method of substitution (Theorem 7.4.5) it follows that

a cos0O - a cos 0 do.

O =03

a
I a’—x’dx =
0

n
2

= a’ fcosz 0 do.
0

2

2. 1 7 _ % (onusing Observation 7.5.2).

22
Now, the following theorem gives a formula for evaluating the definite integral of sin”x cos” x between

= a

i
Oand PX where both m and n are positive integers.

7.5.4 Theorem : Let m and n be positive integers. Then

! , if n=1
m+
-1 - 2 1
" R 3 . , if 1#nis odd
I m+n m+n—-2 m+3 m+l
2
Isinmxcos"xdx: nol o _n=3 1 m 1---1-E,ifn is even and m is even
0 m+n m+n—2 m+2 m 2 2
-1 - 1 -1 2
" . 3 ! A if niseven, 1#mis odd
m+n m+n—-2 m+2 m 3
1 , if m=1
n+1l

Proof: Itis easy to see that

b1

2

. 1
Jsmm x cosx dx =——; and
0 m+1

sinx cos" x dx = —.
n+l1

S =03

Suppose that m>2 and n>2. On using the formula for integration by parts (Theorem 7.4.14), we have

sin” x cos” x dx = |sin™ x cos" ™! x cos xdx

S —a
S —a
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Y1
2 d m+l1
_ sin” " x
= Icos” Ty= dx
0 dx m+1
s
2 i
n—1 - m+l 1 7 - m+l d n—1
= cos’ x sin x| — —— _[sm x —(cos
m+1 o m+1 0 dx

¥

2

n—1 ) _

=0+ —— Is1nm+2x cos™? xdx
m+1 0

S
I
—

sin™ x cos"% x(1—-cos> x) dx

3
a

S
|
—

3
u

O ] O =3

14
2
. _ n—1 )
sin” x cos" 2 x dx— '[smm xcos” x dx.
0

n n
2 n—1 2 ,
Hence 1+ '[sinm x cos" x dx = J.sinm xcos"* x dx.
m+1 m+1
0 0
n n
2 1 2 )
Therefore J.sm x cos" x dx = J.sinm xcos" " x dx.
0 m+n
Y1
2
Hence, if we write Lo = '[Sinmx cos” x dx, then from (1),
0
n—1
wehave L., = Ly o
m+n

This is the required reduction formula.

Now, on using the formula for integration by partsto

_ n—l. n-3 I
m+n m+n-—2

m: n-2> WE get

m,n m, n—4-*

On proceeding like this we obtain

n—1 n-—3
| = . ...l orl
e m+n m+n—-2 " m,0

accordingasnis odd or even, where

[, =

. m _ .
m.1 sin” x cosx dx = —;

S —0a
3
+ —
—

x)dx

291
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m—1 m-3 1 T . )
————-—, if miseven
n m m=2 2 2
z — —
and Lo = Isinmxdx: m_lm_;g’ if m is odd
m  m-
" Th S.1
1, if m=1and m>2 (Theorem7.5.1)
i
2 -_ —
Hence [sin™ x cos" x dx = = Lo_n=3 22 1 i1 inisodd.
0 m+n m+n-2 m+3 m+l

Hence, when niseven, we have

n_l . n_3 e 1 -m_lvu-

m . .
-—, if m is even
m+n m+n-2 m+2 m 2

1
2
n—1 n-3 1 m-1 2
m+n'm+n—2mm+2' m g

sin” xcos" x dx =

O —a

,1f 1#mis odd.

7.5.5 Solved Problems

1. Problem : Evaluate the following definite integrals.

n n
2 2

) J.sm x cos’ xdx (i) _[sm x cos”® xdx (ii) sin® x cos” xdx
0 0

O =0l

Solution : Weuse Theorem 7.5.4 to solve (i), (ii) and (iii).

b1

Z —_ —
Q)] jsin4xcossxdx= > 1- 5-3 . 1
0 4+5 4+45-2 4+1
_421_8
9 7 315
e
7 - _— — —
(i) Isinsxcos4xdx: 4-1 4-3 5-1 5-3
0 5+4 5+4-2 5 5-2
_3142_8
9 7 5 3 315
%
(i) fsin6xcos4xdx: 4-1 4-3 6-1 6-3 6-5 =
0 6+4 6+4-2 6 6-2 6—-4 2

3153 1mn_3

—T.
108 6 4 22 512
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T
2. Problem : Find _[ sin® x cos® x dx.

Solution : Let f{x) = sin*x cos®x.

Since f(2n—x) = fim—x)

Ax), itfollows from Theorem 7.4.11, that

21 21
J. sin* x cos® x dx = 2J. sin® x cos® x dx
0 0

21

6

=4 Isin4xcos x dx

0

_46163 6-5 3 1m

Y1
2

3. Problem : Find Ism xcos* xdkx.
_T

Solution : Let f{x) = sin’x cos*x.

Since f iseven, by Theorem, 7.4.10, we have

T T
2 2
[ reodx = 2 f(x) ax
- 0
2
n iy
2 2
Hence _[ sin’ x cos* x dx = 2_|‘sin2 x cos* x dx
_n 0
2

4. Problem : Find Ix sin” x cos® x dx.
0

T
Solution: Let A = fx sin” x cos® x dx . Then
0

T
A = [(—x) sin” (m—x) cos®(m—x) dx (by Corollary7.4.9)
0

293
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T
n—x) sin’ x cos® x dx
( )

0

Vi T
In sin” x cos® x dx — fx sin
0 0

7 x cos® x dx.

T
nJ. sin” x cos® x dx .
0

This implies 2A

Hence A = sin’ x cos® x dx

|3
O =3

Let f(x) = sin’x cosx.

sin’(1t —x) cos®(1 —x)

Since f(m—x)

Ty cos®x = f(x),

sin

by Theorem 7.4.11, we have

sin’ x cos® x dx.

S 03

T
J. sin” x cos® x dx = 2
0

Hence from (1), A = 7 | sin’ x cos® x dx

S (3

n-6_1- 6-3 6-5 7-17-3 7-5
7+6 7+6-2 T7+6-4 7 5 3
16

— .

3003

a
5.Problem : Find J. x*(a® —x*) % dx.

Solution : Since f(x) =x%(a® —x%)>2 is an even function, by Theorem 7.4.10, it follows that

a a
J. x2(@®-x)dx = 2"‘x2(a2 —x2)*2ax.
0

—a

Putx=asin6. Thendx=acos0dd. When08=0,x=0; when e=g, x =g ; when 0e [O, g}, x€[0, a].

(D)
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Hence, by Theorem 7.4.5, it follows that

a’sin’0-a’cos’0 - a cosO do

S =0

2[x* (@ =x*)?dx = 2
0
n

2
2a° Isinz 0 cos*0 do
0

I
[\®]
Q

[o)}
|

I

13
6. Problem : Find j x2 J1-x dr.
0

Solution : Put x=sin?0 . Then dx=2sin 6 cos 0 dO.

T
When 6=0, x=0; when 625, x=1.

When 6 e [0, g} x €]0, 1]. Hence by Theorem 7.4.5, it follows that

n
2
Isin3 0 cosO - 2sinB cosO dO
0

szm dx

0

s
2

2jsin4 0 cos20 d0
0

5 T
32

T
16’
Exercise 7(c)

I. Findthe valuesofthe following integrals.

sin'® x dx 2. |cos''x dx 3.

—_
S =)
O 03
S o

2n
4. |sin*x cos* xdx 5. [sin®x cos® xdx 6. _[sin
0

S —
O — 33

2

cos’ x sin® xdx

x cos* xdx

295
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~
—wla
ol

sin2 @ cos’ 04O 8. [sin’6 cos’0d6
_n _n
2 2

a 7 2 3

9. J.x(az—xz)2 dx 10. fxz N2—x dx
0 0

II. Evaluatethe following integrals.

1 5 4 5 3

Lo [x°(1-02 ax 2. [a6-x7)2 dx 3. [O-x)"x dx
0 0 -3
p n ¢ [7-x

4. [x@5-2)"dx 5. [sinfxcosTvdr 6 [ v
0 -n 3 VAT
‘ z

7. I (6—x)(x—2)dx 8. J. tan> xcos® x dx
2 0

III. Evaluatethe following integrals.

1 T

1. J.xm(l—x)s/2 dx 2. I(1+cosx)3 dx
0 0

0 dx p 2 7
3. . NS—x)'d
‘!; JO—x)(x-4) .([x ( )

N

2m
5 j(1+cosx)5(1—cosx)3dx
0

7.6 Applications of definite integral to areas

Inthe previous sections of this chapter, we observed that if y= f(x) is anon-negative continuous function

defined on [a, b] then the area under the graph of f between the ordinates x=a, x=>5b and the X-axisis given

a
by the value of the definite integral f f(x) dx.In thefollowing, we give different possible ways of calculating

b
such areas depending on the nature of the integrand.
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7.6.1 Areas under curves Ya
(i) If f:[a, b]— [0, ) iscontinuous, then the area
A of the region bounded by the curve y =f(x), y =)
the X-axis and the lines x =a and x = b is given
b A
byA= [ f(x) dx whichisshowninFig. 7.3 ¢ 5
g (¢ a b X
graphically.
v Fig.7.3

(i) Let f:[a, b]— (—e°, 0] be continuous. Then the graphs of y=£x) and y=—£x) on [a, b] are
symmetric about the X-axis. So, the area bounded by the graph of y = f(x), the X-axis and the lines

x=a, x=>b is same as the area bounded by the graph of y = —f(x), the X-axis and the lines x = a,
b

x=b which is, hence, given by A = —j f(x) dx. This is shown graphically in the Fig. 7.4.
a

YA

A
v
>~

y=Ax)

Fig. 7.4

From (i) and (ii), we observe that A =

b
[ ) ax

(iii) Let f:[a,b] = R be continuous and f(x)=0 for all x€ [a, c] and f(x)<0 for all xe[c, b]
where ¢ < ¢ < b. Then the area of the region bounded by the curve y = f (x) , the X-axis, and the

lines x = a, x = b is givenby
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A = jf(x)dx + j).—f(x)dx

¢ b
- jf(x)dx - J.f(x)dx (D

which is shown in Fig.7.5 graphically.

YA
A y=Ax)
< S - ——>X
v
Fig.7.5
c b
Note : (1) can be writtenas A = J.f(x)dx + J.f(x)dx
a c

(iv) Let f:[a,b] = R and g:[a,b] — Rbe continuous and f (x)< g (x) forall x& [a, b]. Thenthe

area of the region bounded by the curves y = f (x), y=g (x) and the lines x = a, x = b is given by

b b YA
A= Ig (x)dx —J.f (x)dx (See Fig.7.6).
Incase g (x)S f (x) forall X< [a, b]
then the area A is given by
b b
A=] 7 ()= [ (x)ax. s
Hence, in either case the area A is given by J Fig.7.6

A =

b b
ff(x)dx - J.g(x)dx
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v)

(vi)

Let fand g be two continuous real valued functions on [a, b] and c€ (a, b) such that

f(x)<g(x) for all xe€[a,c¢) and Y1
=g(x)

g(x)<f(x) for all xe(c, b] with
f(c)=g(c). Then the area A of the

region bounded by y = fix), y = g(x),

and thelines x = a, x =b is given by

/
©)
Q
o
>

~

c b
A = [[g(x) - F@ldx + [[f(x) - g(x)ldx

+

[(reo - g(x) ax

b
[(reo - g ax

which is shown in Fig. 7.7 graphically.

Let f:[a,b] = R, and &:[a,b] = R be two continuous functions. Suppose that, there exist points
X, X, € (a, b) with x, <x, suchthat f(x)=g(x) and f(x,)=g(x,) and f(x)=g(x)

forall xe (x1 , X, ) . Then the area A of the region YA
bounded by the curves y =f(x), y = g(x) y=/x)
and the lines x = x;, x = x, is givenby | I
| y=g(x) |
7 . Ix X I
A= [(f(x)-g(x))dx (SeeFig.7.8). < S ——>X
)q Fig. 7.8
Incase f (x) <g (x) forall xe (xl, X, ), thenthe area Ais givenby |,

X
A= [ ()= 1) ax.

!

Hence, in either case, the area A is given by

A = .

x
[ (@) = g(ax

1
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7.6.2 Note

(1) Some regions are best treated by regarding x as a function of y. Ifaregion is bounded

N
by the curve x=g (y) where g is a Y
y=d

non-negative continuous function on d

[c, d], the Y-axis and the lines y =c,
A x=g(y)

and y =d ,thenits areais given by

d
A = gy

N
v
>~

and this is illustrated in Fig. 7.9.
Fig. 7.9

@) Similarly, if g : [c, d] = (=<0, 0] is YA
continuous, then the area A of the region y=d
bounded by the curve x=g (y), the

Y-axisandthelines y =c, y=d is

x=g() A

d
A= f—g(y)dy- c

<
Il
o

N
v
o

This is shown graphically in Fig. 7.10.

Combining (1) and (ii), we may write A =

d
fg(y) dy|.

(iii) Ifaregion is bounded by the curves with equations x = f ( y), xX=g ( y), y=c and y =d ,where
fand g are continuous and f (y)Z g (y) for c < y<d (SeeFig.7.11),thenits areais
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d
A=[[F(y)-5()]a. o y=d
C
If we write x, for the right boundary and
x; for the left boundary, then the above *¥=80) =/
area A isgiven by -
d y=c
Az_[(xR—xL)dy. < > X
¢ (0]
¥ Fig. 7.11

In general, when f{x)>g(y) on [c,d] or f(y)<g(y)on [c, d], we have

A =

d
[ - g(y) ax

7.6.3 Solved Problems

1. Problem: Find the area under the curve f(x)=sinx in [0, 2m].

Solution: Consider the graph of the function f{x) = sin x with respect to the interval [0, 27t]. We know that

sinx >0 for all x€ [0, ] and sin x <0 for all x€ [r, 21t]. The graph of f will be as shown in Fig. 7.12.

Hence, the area of the region enclosed by the curve y=sinxin [0, 27] is given by

Y’P
1
311/2
< 5 - - - / >X
/2 n
A
_11
Fig. 7.12
T 27 . om
A= J.sinx dx + f (—sinx)dx = —cosx]o +cosx] = 2+2=4,
T
0 T
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2. Problem: Find the area under the curve f (x) =CoSX in [0, 27 ]

Solution: We know that cos x=0 for all YA

1
xe{o, %}U[%ﬂ 275} and cos x<0 for all /] /_]
T S

> X

3 <
X€e {E, 7”} The graph of cos x in [0, 27] is S0 /2 A 32 2m

therefore as shown in Fig. 7.13. Hence, the area A 4

under the curve f(x) = cos x in[0, 21| is given by

Fig. 7.13
n/2 3n/2 2n
A = J‘ cosx dx + _[ (—cosx)dx + I cos x dx
0 /2 3n/2
. /2 . 3m/2 . 2n
= sinx] - sinx] + sin x| =1+2+1 = 4.
0 /2 3n/2

3. Problem: Find the area bounded by the parabola y = x2, the X-axis and the lines x =—1, x=2.

Solution: The region bounded by the parabola y = x°, the X-axis and the ordinates x = —1, x =2 isas

shown in Fig. 7.14.
Y

The required area A is given by

2 x3 2
A = J.xz dx = —
-1 1

|
w | oo
|
7~/
|
[SSRE
~
1l
N
I
L
@)
—
(Y]
v
>

v

Fig. 7.14
4. Problem: Find the area cut off between the line y =0 and the parabola y= x> —4x+3.

Solution: First we find the points of intersection of the line y =0 and the parabola
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y = x* —4x+3. The abscissae of these "
points of intersection are given by ) P
x2—4x+3=0 ie,x=1,3. Thatis, the ] yoeT
parabola cuts the X-axis at x=1 and at < . . : —>x
x = 3. Hence the graph of the parabolaand |
the region bounded by the parabola and the
X-axis are as shown in Fig. 7.15. —H
A Fig. 7.15

The required area A is therefore given by

3 3
A f—(x2—4x+3)dx - f[l—(x—2)2]dx
1 1

2

3 ) 3

3
C(x-2) 2 _4
T

5. Problem: Find the area bounded by the curves y=sinx and y=cosx between any two

consecutive points of intersection.

Solution: Two consecutive points of intersection of the curves y = sin x and y = cos x are

r 7 Y1
x=z and x =T . Also, we have 1.5
=sinx
. V/2NY 4 !
sin x 2 cosx for all xe|—, —|. 05"
Hence, the area bounded by these curves 0 o m 54 3m2 - X
. T Sz, —057]
and the ordinates x =— and X =— is 1
4 4 - y=cosx
as shown in Fig. 7.16. —1.57]
' Fig. 7.16
The area A required is therefore given by
5n/4 Sn/4
A= J. (sinx—cosx) dx = (—cosx—sinx]

/4 n/4

= 2+2 =22

6. Problem: Find the area of one of the curvilinear triangles bounded by y = sinx, y = cos x and
X-axis.

Solution: OAB is one of the curvilinear triangles bounded by y =sin x, y = cos x and the X-axis.
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The area of this curvilinear triangle is as shown in Fig. 7.17. Since cos x 2 sin x for x€ [O, Z} and
cosx <sinx for ye {_, _} , the required area A is given by
4 2

n/4 n/2

n/2
A= J. sin x dx + '[ cosx dx = —cosx]n/4+sinx]
0 n/4
0 n/4
Y
- 1_L + 1_L =(2-/2) 1 y=sinx
2 V2 ' &
B AN
O s TR >X
—1 ~
y=cosx
Fig. 7.17

7. Problem: Find the area of the right angled triangle with base b and altitude h, using the
Sfundamental theorem of integral calculus.

Solution: Let OAB be a right angled triangle and N
|B = 90°. Choose O as the origin and OB as O )
the positive X-axis. If OB=5and AB =/ then i
A=(b, h). (SeeFig.7.18). So, the equation of
. h < B >X
OAis Y =(gjx . 0 b (b,0)
Fig. 7.18

h
Hence, the area A of the triangle is equal to the area bounded by the lines x =0, y=h and y = (g)x .

b ()] 1
So, A:j—dx:— 2| = Zbn.
)b bl 2 2

0
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8. Problem: Find the area bounded between the curves y2 —1=2x and x=0.

Y/
Solution: The parabola y* —1=2x /
1 1
meets the X-axis at x = ) and
Y-axis at y=1and y = —1. As the (05,0 N
curve is symmetric about the X-axis, _1' 0 0',5 1 1|.5

the area bounded by the curve and the
Y-axis is as shown in Fig. 7.19. -1 w= o

Hence, the required area

A= jl(—x)dy = :1[ —(%de = j'_(y2 _1)dy

=1-1:2
3 3

9. Problem: Find the area enclosed by the curves y =3x and y=6x— x2.

Solution: The straightline y =3x meets the
parabola y = 6x — x> at the points whose

x-coordinates are given by 3x = 6x — x2 i.e.,

N

x=0, 3. Since 3x < 6x—x’ forall xe [0, 3],

the area enclosed by the parabola and the given

line is as shown in Fig.7.20.

Fig. 7.20

Hence, the required area A is given by. v

A= j;.[(6x—x2)—3x:|dx = j;(Sx—xz )dx

2 3 :
_ o) 22 27 0
2 3)), 2 3 6 2
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10. Problem: Find the area enclosed between y = x> —5x and y =4—-2x.

Solution: The points of intersection of the parabola and straight line are given by y=x2—5x=4-2x (i.e.,)
x2-3x—-4=0. Hence x=4,-1. VA
Also —1< x<4 = (x+1)(x—4)<0 8-

— 2 _
= x> -3x-4<0 - y=x7=5x

=% -5x<4-2x. \
So, the area enclosed by the parabola and < >

the straight line is as shown in Fig. 7.21. —21

Y
|
N -
L
e
H-
L) -
I
W
=

Hence, the required area

4
[[@-2x)-(x" =5:)]dx Fig. 7.21
-1

A

4 x2 X3 4
[@+3x—x"yax = | 4x+3| = |-=
) 2 ) 3],

2 3 6

11. Problem: Find the area bounded between the curves y= xz’ y= \/; .

Solution: x> =x & x'=x YA
=S x(x3—1)=0
< x=0 or 1. y=1x

Hence, the two curves intersect at (O, 0)
and (1, 1) .Also ¥y = \/; is the branch of

the parabola y2 = x that lies in the first

N

quadrant. Further /x > x> Vxe [0, 1]. -1 0 1
So the area enclosed by the two curves is as
shownin Fig.7.22.

Fig. 7.22
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The required area
1 3 3 1
A = I(\/;—xz) dx = zx2 A
0 3 3
0
12. Problem: Find the area bounded between the curves y* = 4ax, x*> =4 by (a> 0, b> 0).
Solution: First we find the points of intersection of the given curves.

2
2
X =dax & x=0 or x° =64ab’
4b

& x=0 or x=4d"3p?"

2
Therefore, the two curves intersect in (O, O), (4a”3b2/3, 4a2/3b”3), Further 2+ ax zz—b

Vx € [0, 4a"°b*"*] . So the area enclosed by the two parabolas is as shown in the Fig. 7.23.

12
4a3b3

2
Required area A = Wax -2 |ax A
4b 2=
0 X —4by
2 x3 4a1/3b2/3
= a2 =t
{( ) 3 12b |,

~ 32ab  16ab . R

3 3 - Q) 4113273 > X

_ 16ab

3 v
Fig. 7.23
Exercise 7(d)
I. Find the area of the region enclosed by the given curves.
. T
1. y:cosx,yzl—ﬂ. 2. y=cosx,y=sm2x,x=0,x=5.
Y8
3. y=x"+3,y=0,x=-1, x=2. 4. y=e",y=x,x=0, x=1.
. T

5. y=smx,y=cosx,x=0,x=§- 6. x=4-y°, x=0.

7. Find the area enclosed within the curve |x| + | y| =1.
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x=2—5y—3y2,x=0. 2. X2=4y,x=2,y=0.
y2=3x,x=3. 4. y=x2,y:2x.
y=sin2x,y=\/§sinx,x:0,x:%, 6. y=x, y=x".
y=4x-x% y=5-2x

Find the area in sq. units bounded by the X-axis, part of the curve y =1+ % and the ordinates
X

x=2and x=4.

Find the area of the region bounded by the parabolas y* = 4x and x> = 4y .

Find the area bounded by the curve y = [n x, the X-axis and the straight line x = e.

y=x2+1, y=2x-2, x=-1, x=2,

y? =4x, y’ =4(4—x)_

y=2-x", y=x",

Show that the area enclosed between the curves y* =12(x+3) and y* =20(5-x) is 64\/§ :

Find the area of the region {(x,y): x> —x—1<y<-1}.

The circle x* + y* =8 is divided into two parts by the parabola 2y = x°. Find the area of both the
parts.

2 2
Show that the area of the region bounded by x_2 + Z—z =1 (ellipse) is zab. Also deduce the area
a

of the circle x* + y2 =a’.

Find the area of the region enclosed by the curves y =sin7zx, y = x-x, x=2.

2 2
Let AOB be the positive quadrant of the ellipse x_z + y_2 = 1 with OA =a, OB =b. Then
a b

7—2)ab
show that the area bounded between the chord AB and the arc AB of'the ellipse is Q .

Prove that the curves y2 —4xand x> =4 y divide the area of the square bounded by the lines

x=0, x=4, y=4 and y =0 into three equal parts.



| Definite Integrals 309

g [Key Concepts ] \

% The Definite Integral : Letf: [a, 5] — R be abounded function. Let
P = {xy, x|, cees X 15 X X1 ...,X,} beapartition of [a, b] and let ¢; € [x,_, x;] for each i=1,

2, ...,n. Asum of the form
n
SP.f) =Y ft;)Ax;
i=1
is called a Riemann sum of f.

We say that f is Riemann integrable on [a, b] (or simply integrable on [a, b]) if there exists a
real number A such that S(P, /) approaches A as ||P|| approaches zero. Such an A, if exists, is

b b
unique and is denoted by f f(x) dx. Wecall _[ f(x) dx, the definite integral of f from ato b.

-1 .
s oo n , 1} isapartition of [0, 1]into 7 subintervals

S |

1
% If fiscontinuouson [0, 1]and P = {O, =
n n

1 n .
1 .1 i

each of length —, then If(x) dx = lim —Zf(—)
n 0 n—eniZ" \n

More generally, if £ is continuous on [0, p] where p is a positive integer then,
p 1 np :
[ f@) dx=1im=Y (—)
0 noe i \nJ

®

% First Fundamental Theorem of Integral Calculus : Let /' be integrable on [a, b]. We write

X
A(x) = J' f(@) dt , x€ [a, b]. Then Aiscontinuous on [a, b]. If fis continuous on [a, b] then

a

Ais differentiable in [a, b]. Further, A’(x) = f(x) forall x€ [a, b].

% The Fundamental Theorem of Integral Calculus : If f isintegrable on [a, ] and ifthereis a
differentiable function F on [a, b] such that F'=f then

b b
[£@) ax = [Fw)] = Fb)-Fa).

a b c

% If f:[a, b] —>Ris integrable, then [ f(x) dx = = [f(x) dx and [f(x)dx =0V c€ [a, b].
b a c

[




Mathematics - IIB |

If fand g are integrable on [a, b], then f+ g is integrable on [a, b] and 3

b b b
[(F+e) ax = [f(x) dv+[g(x)dx.
Let f:[a, b] =R beintegrable and o € R. Then o f is integrable on [a, b] and

b b
[ )00 dx=a [ f(x) dx.

Let f:[a, b] - R bebounded. Letc € (a, b). Then f is integrable on [a, b] if and only ifitis

integrable on [a, c] as well as on [¢, b] and, in this case,
b ¢ b
[ £ de=[f)det [0 dx

Method of Substitution : Let g: [c, d] — R have continuous derivative on [c, d]. Let
f:g([c, d]) =R be continuous. Then (fog)g” is integrable on [c, d] and

g(d) d
[ F@ ar =[ (g ¢'x) ax.

g(c)

Let f be integrable on [a, b]. Then the function g defined on [a, b] as

g(x)=fa+b—x)forall xin [a, b], is integrable on [a, b] and
b b
[g(x) dx =[ f(x) x.

If f isintegrable on [0, a], then the function g defined on [0, a] as g(x) =fla—x) forall x in
[0, a] is integrable on [0, a] and

]Zf(a—x) dx = ]Z.g(x) dx =.Tf(x) dx .
0 0 0

Let f:[—a,a]—R be integrable on [0, a]. Suppose that 1 is either odd or even. Then f is
integrable on [—a, a] and
. 0, if f is odd.
xX)dx =1 ¢
_ja F 2j f(x)dx, if £ is even.
0

Let 7 :[0,2a] — R beintegrable on [0, a]. Suppose that f(2a —x)=f(x) forall x in [a,2a].
Then £ is integrable on [0, 2a] and [
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J \
2a a
[ Fydx =2f f(x) ax.
0 0
% Let /:[0,2a] — R beintegrable on [0, a]. Suppose that f{2a—x) = —f(x) forallx in [a, 2a].
Then f is integrable on [0, 2a] and
2a
[ f(x) ax =o.
0
< Integration by parts formula : Let « and v be real valued differentiable functions on [a, b] such
that u” and V" are integrable on [, b]. Then V" and u” v are integrable on [a, b] and
b b
[uvnyax = u®)vb)-u(@)v(a) - [u'(x)v(x)dx.
a a
% Ifnisaninteger>2, then
-1 n- 1 e
5 n—r 3---—-£,1fnlseven
. n n n-2 2 2
Ism xdx = 1 3 2
0 BT BT2 20 if s odd.
n n-2 3
T s
2 2
23 '[sin" xdx = Icos” x dx, nisapositive integer.
0 0
% Ifmand n are positive integers then
. ,if n=1
m+
nl n=3 2 1 if 1#n is odd
n m+n m+n—-2 m+3 m+l
o n-1  n-3 1 m-1 1w . . :
J.sm X cos xdx = . . ...—.— if nisevenand mis even
i m+n m+n-2 m+2 m 2 2
L] . B=8 . ,m—1.__g’ if nis even and 1# m is odd
m+n m+n—-2 m+2 m 3
L, if m=1
n+l
\ (
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7 N\
% AreaA of'the region bounded by the curve y = f (x) , the X-axis, x = g and x = b is given by

f .Tf(x)dx, if f(x)ZO Vxe [a, b]

b
—[ £ (x)dx, if f(x)<0 Vxe[a, b]
% AreaA ofthe regioc;l bounded by the curve x = g ( y ) , the Y-axis and the lines

y=c, y=d isgivenby
d d
[xdy or [g(xdy.if g(3)20 Vye[c.d]

A=1 ¢
d d
—dey or —fg(y)dy, if g(y)=<0Vyelc,d]

% Thearea of the region enclosed between the curves y = £ (x), y = g (x) and thelines x =a, x=5
b
is given by the formula : Area = I[f (x)— g (x)]ax if f(x)=g(x) forall x€[a, b].

@ If f(x)=g(x)in [a c]and f(x)<g(x) in [c, b], a<c<b, then area bounded by the two

curves y = f (x), y=g(x) and thelines x=a, x=>b is

c b
= [[r - gm]lax + [[g(x) - f(0)]ax.

Historical Note

Integral Calculus is the study of the definition, properties and applications of two related concepts :
the indefinite integral and the definite integral.

The indefinite integral is the antiderivative. The definite integral inputs a function and outputs a
number. The technical definition of the definite integral is the limit of a sum of areas of rectangles, called
Riemann sum, as propounded by Riemann.

The symbol for indefinite integration was introduced by Leibnitz. The notation for definite integral

b
ie, [ f(x) dx was proposed by Fourier and Cauchy immediately adopted and popularised it.

7
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I. 1 Y 2. log2 3. 4 4. 0
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© 3 . —y .
_ 1 _ T
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T
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3 T 4
1 4 1
12. In+2 13. = 14, 2¢ 2 15, —
5 e
1 T ) 1 3 1
. 1. —log2 . =(b-a | l=—m - —1log3
L 1. —log 28() 32[6} 4. 55log
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m 0 2
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Chapter 8

Dillorontiol Eamai

“Among all the mathematical disciplines, the theory of
differential equations is the most important. It furnishes
the explanation of all those elementary manifestations of
nature which involve time” - Sophus Lie

Introduction

Differential equations have applications in many branches
of physics, physical chemistry etc.
Inthis chapter we study some basic concepts of differential

equations and learn how to solve simple differential equations.

8.1 Formation of differential equations -
Degree and order of an ordinary
differential equation

The present section is aimed at defining an ordinary
differential equation, forming such an equation fromagiven firmly
of curves or surfaces. We also define two concepts, namely order

and degree of an ordinary differential equation.

8.1.1 Definition

An equation involving one dependent variable and
its derivatives w.r.t. one or more independent variables
is called a differential equation.

Claude Alexis Clairaut
(1713 -1765)

Clairaut was a French
mathematician and thinker. He was
a prodigy at the age of twelve and
wrote a memoir on_four geometrical
curves, and at the age of sixteen he
wrote a treatise on fortuous curves
which on publication in 1731 got
him admission into French Academy
of Sciences. He wrote various
papers on the orbits of moon and
planets particularly on the path of
Halley's Comet.
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Ifadifferential equation contains only one independent variable, then it is called an ordinary differential
equation and ifit contains more than one independent variable, then it is called a partial differential equation.
Hence an ordinary differential equation contains only ordinary derivatives whereas a partail differential equation

contains partial derivatives.

Since derivative is arate of change, itis only natural that differential equations arise in the description of
change in state or motion. Differential equations occur in problems of radioactive decay, Newton’s Law of
cooling, chemical reactions, the motion of a particle or a planet, the motion of springs to electric circuits and

population dynamics.

8.1.2 Examples

d d
o) d—y+5x = cos x. (il Ey=/oc(kbeingaconstant)
X
2\ 3
iy | L2 | A D) _ex =4, i) 243
dx? dx ox ~dy

) 02w N 02w N 02w _0o
oxr  9y* 972 '

8.1.3 Note

1. (i),(i))and (iii) of 8.1.2 are examples of ordinary differential equations in which yis the dependent variable

andx is the independent variable.

2. (iv)and(v)of 8.1.2 are examples of partial differential equations. In (iv), zis the dependent variable and
xandyare independent variables whereas in (v) wis the dependent variable and x, y and z are independent

variables.

In this chapter, we study only ordinary differential equations.
8.1.4 Order and Degree of a differential equation
Order : The order of adifferential equation is the order of the highest order derivative occuring in it.

Degree : The degree of a differential equation is the highest power of the highest order derivative
appearing in the equation after the equation is written free from radicals and fractions as far as derivatives are

concerned.
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8.1.5 Examples
1/2

dy X
1. Orderanddegreeof — = —F>-——7>—arelandl.
g dr 2 (1+x72)
5/3
42 av . . .
2. _z = {1 + [_yj ] has order 2 and degree 3, since the equation can be expressedasa polynomial
dx dx
2 ) 2P
equationinthederivatives as [d_g] = [1 + (%J . Inthisthe exponent of the highest order derivative
dx
>
2 Y is 3 and hence the degreeis 3.
A
P 2 2 p P 3/2
3. The order and degree of 1 +[—§J =2 +(d_yj are 2 and 4 respectively, since it can be
dx X
2
2 3
2 2
expressed inthe from | 1+ 4y =2+ & .
dx? dx
d’y . dy dy ) . : : :
4. Orderof —5 + 2— + y =log —=| is2 and degree is not defined since the equation cannot be
dx dx dx
expressed as a polynomial equation in the derivatives.
W (2 34
5. Orderand degree of (d_yj + [—;)J = 0 are2 and 2, since the equation can be written as
X dx

2
aY _[dy
dx dx? '

8.1.6 Note : The general form of an ordinary differential equation of n’” order is

d d"
X, y’ _y9"',_y :0
dx dx"
or F(x,y,y(l), ...,y(”)) =0.

8.1.7 Formation of a differential equation : Suppose that an equation
y=0(x, o, 0, e, 0) .. (1)

where o, 01, ..., 01, are parameters (or arbitrary constants), representing a family of curves is

given. Then by successively differentiating (1), a differential equation ofthe form
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F(x,y, y, ., yM)=0 - (2)
can be formed by eliminating the parameters o, o, ..., o, . This process is called the formation
of differential equation (2) satisfying the family of curves (1). For example, we know that
y=mx ..(3)
represents a family of straight lines passing through the origin. This can be represented by ¢(x, )=y, where
O(x, m)=mx. Infact for different values of the parameters m, we get different straight lines of the family. Hence
by eliminating m from (3), thatis, y=0(x, m) we get the required differential equation. Differentiating (3) w.r.t.
x, we get
dy
=
Substituting the value of m from (4) in (3), we get

dy
=] — |IX
=[]

- dy dy
Le., Fl x,y,—= | = y=| == |x=0. ..(5)
[vie) =)

Hence (5) is adifferential equation whose solution setrepresents the family of straight lines (3).

m. ..(4)

8.1.8 Solved Problems
2

d
1. Problem: Find the order and degree of the differential equation d—g = — p2 y.
x
d? d’y
Solution : The given equation is a polynomial equation in —;) . Hencethedegreeis 1. Since F isthe highest
dx X
derivative occuring in the equation, its orderis 2.
2 2
d’ d
2. Problem: Findthe order and degree of —z e
dx dx
. . - dy . d% d’y .
Solution: The equationisapolynomial equationin — and —=-. The exponent of —=- is 2.
dx dx® dx’
3
Hence the degree is 2, since d_gz isthe highest order derivative occuring in the equation, the order of
dx

the equationis 3.

1/3

2

3. Problem: xllz{%] +x?+y =0 has order 2 and degree 1. Prove
X X

Solution: The given equation can be written as



Differential Equations | 319

dx? dx

the order and degree of the equation are 2 and 1 respectively.

2 3
x3/zﬂ = —(xﬂ+y) s

6/5
2 3
4. Problem: Findthe order and degree of [d_%’ + (ﬂj } = 6y.
dx dx

Solution: The given equation can be written as

dy (dyY
_%’ n (_y] = (6y)"/°.
dx dx

Hence the order and degree of the equation are 2 and 1 respectively.

5. Problem : Find the order of the differential equation corresponding toy = c(x —c)?, where c is an

arbitrary constant.
Solution : The differential equation of y=c(x —c)? is obtained by eliminating ¢ from
y=c(x—c)? and b = 2c¢(x—c).
dx

Hence the order of the differential equationis 1.
6. Problem : Find the order of the differential equation corresponding to
y =Ae* + Be’* + Ce™* (4, B, C being parameters) is a solution.
Solution: Required differential equation is obtained by eliminating A, B, C, fromy,

2 3
DAY g Y
dx’ dx? dx®

43
Ofthese the highest order derivative is d_é) .
X

Hence the order of the differential equation s 3.

7. Problem : Form the differential equation corresponding toy = cx —2c?, where c is a parameter.

Solution: Wehave — y=cx—2c? .. (1)
Differentiating (1) w.r.t. x, we get
dy
—=C
I -.(2)
Substituting the value of ¢ from (2) in (1), we get
2
dy dy
= x = |=2 =
- o{2){#) .

Hence (3) is the differential equation corresponding to (1).
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8. Problem : Form the differential equation correspondingto y = Acos 3x + B sin 3x, where

A and B are parameters.

Solution: Wehave y = Acos3x+Bsin3x (1)
Differentiating (1) w.r.t. x, we get
Y _ —3Asin3x+3B cos 3x ..(2)
dx
Again differentiating (2) w.r.t. x, we get
d? y )
—> = —9Acos3x—9Bsin3x
dx
= —9(A cos 3x+ B sin 3x)
=-9.
: d*y
Thatis, —5+ 9y = 0. ..(3)

dx
Hence (3) istherequired differential equation.
Alternate Method

Eliminating A, B fromthe equations

vy = Acos3x+Bsin3x

o —3Assin3x+3Bcos 3x
dx
d2y .
and —5 = —9Acos3x— 9Bsin 3x,
dx
we get
y —cos3x —sin 3x
o 3sin3x —3cos3x| =0
dx
2
d 2) 9cos 3x 9 sin 3x
dx
d °y
(i) [27sin?3x+27 cos? 3x]y—[—9 sin 3x cos 3x+9 sin 3x cos 3x] d_y +[3 cos? 3x + 3 sin? 3x] el 0
X X
zy e
thatis, 27y+3ﬁ =0 (or) _%’ +9y = 0.

dx
This is the required differential equation.
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9. Problem: Form the differential equation corresponding to the family of circles of
radius r given by (x —a)? + (y —b)? = v, where a and b are parameters.

Solution: Wehave (x—a)?+(y—b)2=r2 .. (1)
Differentiating (1) w.r.t. x, we get
(-a)+ -5 L = 0 @)
dx
Again differentiating (2) w.r.t. x, we get
&y (dyY
I1+(y-b)—+—| =0 .3
=) ( dx] 3)

Eliminating a from (1) and (2), we get

(y-b)* @2“ =r?
y I . (4)

Eliminating b from (3) and (4), we get

2 3
2 2
r 4y =1+ b
dic? dx
whichisthe required differential equation.

10. Problem : Form the differential equation corresponding to the family of circles passing
through the origin and having centres on Y-axis.

Solution : The equation ofthe family of circles passing through the origin and having centres on the
Y-axisis
x2+y2+2hy=0 .. (1)
where 4 is a parameter.
Now differentiating (1) w.r.t. x, we get
d d
x+yd—i]+ hﬁ=0 - (2)
Eliminating 4 from (1) and (2), we get

(-2 2020
dx
and this is the differential equation corresponding to (1).

8.1.9 Solution of a differential equation

Solution : A solution ofa differential equation is arelation between dependent variable, independent variables
and along with some arbitrary constants satisfying the differential equation.

General solution : Asolution of a differential equation in which the number of arbitrary constants is equal to the
order ofthe differential equation is called the general solution.



322 | Mathematics - IIB |

Particular solution : A particular solution ofa differential equation is a solution obtained by giving particular
values to the arbitrary constants in the general solution.

8.1.10 Note

1. Iftheequationofa given family of curves contains z parameters, then we have to differentiate z times
successively to eliminate all the n parameters from it. Hence the order of the differential equation
correpsonding to an equation having n parameters is z.

2. Wehave seen that a differential equation can be formed corresponding to a family of curves. Conversly,
the solutions ofa differential equation are equations of curves. Itis obvious that the solutions ofa differential
equation of order » contains a family of curves having » parameters. This equation ofthe family of curves
having nparameters is called the general or primitive or complete solution of the given differential equation
oforder n. By giving particular values to the parameters in the general solution, we get different members
ofthe family of curves. Hence a particular integral or a particular solution is obtained by giving particular
values to the parameters in the general solution.

3. (1) Wehaveseenin8.1.7 thaty=mux, where m is a parameter, is the general solution of the differential

. d .. . .
equation y = < 1. Hence by giving a particular value to m say m =2, we getthaty=2xisa
d.
X

particular solution of the above differential equation.

2
(i) Wegetfrom 8 problem of 8.1.8 that y=A cos 3x+B sin 3x is the general solution of % +9y=0

whereas y=cos 3x+sin 3x isaparticular solution which is obtained by taking A=1and B=1 inthe
general solution.

Exercise 8(a)

I. 1. Findtheorderofthe differential equation obtained by eliminating the arbitrary constants b and ¢ from
xy=ce+be*+x2
2. Findthe order ofthe differential equation of the family ofall circles with their centres at the origin.
II. 1. Formthedifferential equations ofthe following family of curves where parameters are given in brackets.
@) y=c(x=c)% (c) (i) xy=ae*+be™; (a,b)
(i) y=(a+bx)e; (a,b) (iv) y=acos(nx+b);(a,b)
2. Obtainthedifferential equation which corresponds to each ofthe following family of curves.

(1) Therectangular hyperbolas which havethe coordinate axes as asymptotes.

(i) Theellipses with centres at the origin and having coordinate axes as axes.
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III. 1. Formthedifferential equations ofthe following family of curves where parameters are given in brackets:
() y=ae*+be; (a,b) (i) y=ax?+bx; (a,b)
(i) ax*>+by?=1; (a,b) (iv) xy=ax?+ bl/x; (a,b)
2. Obtainthedifferential equation which corresponds to each of the following family of curves.
(1) Thecircles whichtouch the Y-axis at the origin.
(i) Theparabolaseach of which has alatus rectum 4a and whose axes are parallel to X-axis.

(i) Theparabolashavingtheir fociiat the origin and axis along the X-axis.
8.2 Solving Differential Equations

In this section we discuss methods to solve some first order first degree differential equations.

Sincea first order first degree differential equation contains terms like @ andsometerms involvingxand

dx
v,ageneral first order first degree differential equation is of the form
d
d_z = F(x,y),whereFisa functionofxand y.

Throughout our discussion in the rest of the chapter, unless otherwise mentioned, a differential equation

means a first order first degree ordinary differential equation.
8.2(a) Variables separable method

Ifa given differential equation can be put in the form

fx)dx + gy)dy =0 .. (1)
then its solution can be obtained by integrating each term. This method of solving the differential equation is
called variables separable method.

. . . . . . d d
For example, consider the differential equation, x dy—y dx=0. This can be written as B =D sothat
X y
. o . . dx _ rdy
the given equation is one in which the variables are separable. Integrating w.r.t. x, we get _[7 = J.T :

Therefore, logx = logy+logc=log(yc), ceRisarbitrary.
Thatis, x=yc which is therequired solution.

Hence ifthe given differential equation can be reduced to the form (1), then its solution can be obtained by
variables separable method.

8.2(a)(i) Solved Problems
1. Problem : Express the following differential equations in the form f(x) dx + g(y) dy = 0

_dy 14y’ ) dy 2 dy
= — - = 4+ —=
® dx 1+ x2 W y=x dx a” dx
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(iit) D eVt x2e™ (iv) 0] +x2 = x2e
dx dx
Solution
) Jdx _ dy _

1+x° 1+y2

. . . . d dx d
(i) The givenequation canbe writtenas y — ay* = (x+ @)= sothat =Y 5
dx xX+a y—ay

dy _ .
(i) Multiplying both sides by e”, we get e” d_y =" + x* sothat (e +x%)dx—e’dy =0.
X

: : . : d
(iv) The givenequation can be written as d_y = x*(¢*’ —1) sothat

X
X dx +

dy =0
1—e) ™

2. Problem : Findthe general solution of x + y% = 0.

Solution: The given equation can be writtenas x dx+ydy=0.

Hence _[x dx + _[y dy = ¢
ie, x>+y*>=2c istherequiredsolution.

3. Problem : Findthe general solution of Y et

dx

Solution: The given equation can be written as e*dx—e ™V dy=0.

Hence Iex dx — .[e_y dy = ¢ sothat '+ e =cistherequired solution.

d d
4. Problem : Solve y2 —x—y = a(y+—y).
dx dx

d
Solution : Given equation can be writtenas y2—ay =(x+a) d—i)

d d 1
sothat * = Y = {— — }dy (using partial fractions).
x+a y(y-a) ay a(y-a)
Hence J. dx = —J‘ﬂ +J‘L
x+a ay a(y—a)

1 1
Therefore, log(x+a) = —;log(ay) + Zlog(y —a) +logc
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4 1/a
1e., log(x+a) = log c(y j .
ay

Hence x+a = c[y ) sothat y = —————

ay a (x+a)

which is the required solution of the differential equation.

2
5. Problem : Solve @ =2 +2y.
dx x—1
Solution: Fromthe given equation — = dx . On using partial fractions, we get
y +2y  x-—1
11 = d« . dy dy _ dx
2y 2(y+2) x-1 "2y 2(y+2) x-1

d 1
Therefore, J.2—y - Elog(y+2) = log(x—-1)+logc
y

1 1
sothat Elogy—zlog(y+2) = log(x—1) + logc

y 1/2
i log] —— = lo -D].
ie., g( ot 2) glc(x—1)]

1/2
Hence (L] =c(x=1) or y = *(x—-1)* (y+2)
y+2
which is the required solution.

6. Problem : Solve dy _ xQlogx+1)

dx  siny+ycosy

Solution: Fromthe givenequation (siny+ycosy)dy=x(2logx+1)dx.
Hence, fsiny dy + J.ycosy dy = _[2x log x dx + fx dx .

Using integration by parts,
J- . . . ) 2 1
siny dy + ysiny — J.smydy = x"logx — _[x —dx + dex+c
X

sothat ysiny = x?logx+c. This is the required solution.

325
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7. Problem : Findthe equation of the curve whose slope, at any point (x, y), is % andwhich satisfies the

condition y = [ whenx = 3.

Solution: We know that the slope at any point (x, y) on the curve is dy .

dx
d
Hence, by hypothesis, @ - % 1.€., ﬂ = ﬂ
dx x y o x?
d d 1
Hence f—y = I—;C sothat logy=—-—+c.
y X X

(1)

Therefore, (1) is the equation of the family of curves whose slope at any point is x—yz .Takingy=1,x=3

) 1 1 1 ) x3

in(1)wegetc= 3 Hence, logy = ——+§, thatis y = e3%.
X

Thisisthe required solution.

8. Problem : Solvey(I +x)dx +x(1 +y)dy =0.

. . . 1+ 1+
Solution: The given equation can be written as Tax+ 2 dy =0.

X y

Therefore, IH—xdx n J.H—ydy = Qor logx+x+logy+y=c
X y
1.e. x+y+log(xy)=c, whichistherequired solution.

9. Problem : Solve ? = sin(x+y) + cos(x +y).
X

Solution: Putx+y=¢. Then 1+ﬂ = ﬂ
dx  dx

. . dt .
Therefore, the given equation becomes I —1 = sinz+cost

dt

1e., dx = ——
1+ cost +sint

1 2t
‘ dt —sec” —
1e., dx = -2 24

t .t t t
2cos’ -~ + 2sin - cos - 1+ tan—
2 272 any
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~sec’
Therefore, J.dx = .|.2—2; dt.
1+ tan —
2

t
l+tan—| |+ c.
)

Hence x = log(

1+ tanM

}c

Since t=x+y, weget x = log{
which s therequired solution.

10. Problem : Solve (x —y)2 ;l_y =a’.
X

d dt
Solution: Put  x—y=¢ Then -2 -4
dx dx
d dt . .
(or) & = 1-Z sothatthe given equation becomes ;2(1 __t] = 4.
dx dx
Hence, =1-% = T8 e = = 10— C |
ence, — =1-—= sotha = = .
dx t? t? TRl R -
2 [—
Therefore, Idx = jdt +I 2a 2dt sothat x = t+a2-—10g —|+c
t"—a 2a t+a
Since r=x-y, weget x = x—y+glogm +c
2 x—y+a
Le, y = a log LA i P , Which is the required solution.
2 xX—y+a

11. Problem : Solve /1 + x2 1/1+y2dx + xydy =0.

Solution: The given equation can be written as

2
Vi+x 1I 2y dy = ¢

Therefore, [————dx + —
x

27 J1+y?
2
ie., j—d"'l”er%z N+ydy =c (D)
X

VI+x?

X

dx.

Now, weevaluate I
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\/1+x 1+x°

= [——
f X 1+ x?
dx
= + dx
x\/1+x2 \/l+x2
dx 1 2x dx
= j + = _

1
[ dx = [———+ —- 241+’
x\/l+x2 2 \/1+x2 wil+x? 2

(putting x= % inthe first integral on the right)

+ 1427

r 142

J.m'l' 1+x = —log
1+\/1+x2

X X

= —log

+ 1+ 7,

Hence from (1), required solutionis

1 A+
X X

1+ v1+x?

—log

47 +4f14y% =

1Le.,

log| x| - log

FL+x2 +414)? =

12. Problem : Solve dy = w
dx  2x—-4y

Solution : Put x—2y=t. Then 1- 2ﬂ =

Ify_d) i+l
2 dx 2t

— sothatthe given equation becomes

) dt t +1 1
Le., —=1l-—=--

dx t t
1.e., tdt = —dx.

2
t .
Hence, _[t dt = _[—dx so that 5 =—x+c. Since t = x-2y, we get

(x—2y)%+2x = ¢, which s the required solution.
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dy
13. Problem: Solve —— =+y—x.
dx
. ) dy dt . . dt
Solution: Put y—x=¢=. Then —-1 = 2t— sothatthe given equationbecomes 2t— + 1= ¢
dx dx dx
ie., 2t dt = dx-
t—1
2t
Therefore, | —dr = jdx
t—1
: 2
1e., I(2+— jdt =x+c.
t—1

Therefore, 2¢+2log(t—1) = x+c.

Since =4/ y—x, weget 2\y—x + 2log(y/y—x—-1)=x+c¢

which s therequired solution.

14. Problem: Solve & +1 = .
dx
. _ dy dt . .
Solution:Put x+y =+ Then 1 + o = . so that the given equation becomes
X X

dt .
— = ¢' andhence Iﬂ = '[dx. Thatis, —e"=x+c
dx et

ie., —e Y =x+¢ (bysubstituting for f)

(or) e 6tV +x+c=0.

This is the required solution of the given equation.

15. Problem: Solve ? =CBx+y+ 4)% .
X

Solution:Put 3x+y+4 =t Then a4y = dr _ 3 sothat the given equation becomes dr_ 3=1¢2
dx dx dx
dt dt 1 a1
(or) = dx. Hence, = | dx sothat —=Tan | —= |= x+c¢
*+3 J ?+3 J V3 V3

1 f 3x+y+4 o
(or) 3 Tan 5B X+¢ (by substituting for7)

which is the required solution.

329
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d
16. Problem: Solve d—i} —xtan(y—x)=1.

Solution : Put =t thtﬂ—l_ﬁ
olution:Put y—x =7 sotha e I

Therefore, the given equation becomes

1+£ —xtant =1
dx

ﬂ = xtant
(or) I .

Therefore, cot ¢ df =x dx so that .[cott dt = _[x dx .

2
Hence, log|sint| = x? +c

2
ie., log|sin(y—x)| = % + ¢ whichistherequired solution.

Exercise 8(b)

I 1. Findthegeneralsolutionof v1— xzdy + 41— y2 dx =0.

2. Findthe general solution of & = 2_y
dx x

II. Solvethe following differential equations.

oAy 14y 2 B s
dx  1+x° dx
3. (& + Dydy+(y+1)dx=0 4. %:ex-uxze—y
X
5. tanydx+tanxdy= 0 6. V1+x2dx + \/1+y2 dy =0
d d d +
7. y-x 2 =5+ 2 g, L =222
dx dx dx xXy+x

III. Solvethe following differential equations.

1. @:i 2. ﬂ+x2 = x2e
e (1+x)xy dx
3. (o’ +x)dx + (x” +y)dy =0 4. B _ 2y tanh x
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2
5. sin [ D)= xy. 6. by yHy+l_
dx dx  x*+x+1
7. Q = tanz(x+y).
dx

8.2(b) Homogeneous Differential Equation

8.2(b)(i) Definition

A function f(x,y) of two variables x and y is said to be a homogeneous function of degree o if
fkx, ky) = k®Ax, y) for all values of 'k for which both sides of the above equation are meaningful.

8.2(b)(ii) Note

If f(x,y) isahomogeneous function of degree o, then f{x, ) canbe written as f{x,y)= x“q{l)-
X

For, f(x,y)isahomogeneous function of degree o implies that

Jlex, ky) = k% fix, v) Y k.

Taking k= l,we get

= _(xf(x’y)
X
. a Y
Hence flx,y) = % (1, ;]

thatis, flx,y) = x“d)(%), (if we write (1)(%) = f(l, %D

8.2(b)(iii) Examples
(i) Ax,y)=4x?y+2x)? isahomogeneous function of degree 3, since

Slex, ky)

4k>x? ky + 2kx k*y?

= B@x*y +2x%) = B fx,y) Y k.

2
3l 4 Y Y 3 Y
fx,») =x[4;+2—2}:x¢{;j.
X

Note that
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1 1
(i) &(x,y) = xy? +yx? isahomogeneous function of degree 3 since

3 1 1 3
glkx,ky) = k?(xy? +yx2) = k? g(x, y) Vk.

3 yf y
Notethat, g(x,y) = x?2 _+;
X

|
=
\SY[3%}

Il
=
[\SY[3%}

2,2
i) A(x,y) = al 3 Y 3 isahomogeneous function of degree —1, since

X" +y
KP4k 124y
h(kx, ky) = = — =k h(x, y) Vk #0.
( ky) k3x3+k3y3 k x3+y3 (x,y)
2
y
1+
3 2 2
Note that, h(x,y) S R 3+xy3 -2 3
X X +y X 1+L

8.2(b)(iv) Definition : Homogeneous Differential Equation

A differential equation of the form
dy _ f(x,)
de  g(x,y)

where f(x, y) and g(x, y) are homogeneous functions of x and y of the same degree is called a
homogeneous equation.

8.2(b)(v) Method of solving a homogeneous differential equation

Consider the homogeneous equation
dy _ f(x,y)

dx = 2(x, y) .. (1)
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where f(x,y) and g(x,y) are homogeneous functions ofthe same degree, say o.. Then in view of
Note 8.2(b)(ii), flx,y) and g(x,y) can be written as

fx,y) = xa(l)(lj and g(x,y) = xaw(l}
X X

y

Hence, (1) becomes L) = M = F(X) ..(2)
)

X

_ dy dv
Put y=vx. Then == = =. ..(3
ut y=vx. Then o v+xdx 3)

From (2)and (3), we get

xﬂ _ 00 so that xﬂ _ =)

e y() dx ()

v o dx

(or) o -wn T %

This can be solved by variables separable method.
dv

Note : If & =F X ,thenweputxzvyand@:\wy—.
dy y dy dy

This gives a differential equation in v and y in which the variables are separable. We solve this

. X . . .
equationand put v = — to obtain the required solution.
Yy

8.2(b)(vi) Solved problems
1. Problem : Show that fix,y) = 1 + ¥ is a homogeneous function of x and y.

Solution : f(kx, ky) = 1+ =147 = f(x,y) forall k(#0). Hence f(x, y) is a homogeneous
function of degree 0.

2. Problem : Show that f(x,y) = x\/xz + y2 - y2 is a homogeneous function of x and y.

Solution: Now, for £>0
flkx, ky) = kek>x? +k2y* - k2y?
= kz[x\/ x4y _y2:| = K> fix, ).

Hence f(x,y)isahomogeneous function of degree 2.
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3. Problem : Show that f(x,y)= x —ylogy +y log x is a homogeneous function of x and y.
Solution: Now, for £>0
Sex, ky) = kx —ky log(ky) + ky log (kx)
= klx —ylog(ky) +ylog (kx)]
= klx—ylogk—ylogy+ylogk+ylogx]
= k[x —ylogy+ylogx] = kflx,y)

sothat f(x,y)isahomogeneous function of degree 1.

4. Problem : Express (1 +e*¥)dx + eX/y[l ——]dy 0 in the form & = F[ ]
y

y dy
" ex/ y ﬁ -1
Solution : The given equation can be written as . = E: / . ] which s in the required form.
y +e

dx X

5. Problem : Express (xy/x> +y* —y*)dx +xydy = 0 in the form @b F(X)

Solution: Fromthe given equation

2
@ _ yz—x\/x2+y2 — x> x?

dx Xy

d
6. Problem : Express LA L—zx in the form dx —f 2|
dx - dy y
x+ye ”
Solution: Fromthe given equation
—2x

dx _ x+ye’
dy y

— £+e—2(x/y) — F(£]
y y
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2
7. Problem : Solve dy = m

dx xz—xy

335

Solution: The given equation is ahomogeneous equation, since both the numerator and denominator are

homogeneous functions each of degree 2.

Now put y=vx. Then a4 = v+ x—

sothatthe given equation becomes v + x . =

dx dx
dv V2 =2y

by 1-v
2
Hence, xﬂ =23 othat LTV dv _ax
dx 1-v 2v% =3y X
1-v
Therefore, J.zidv = jﬂ
2v= =3y X
Hence, —lf l+ ! dv = logx-logc
3Jlv 2v-3
1 1
sothat 3 logv + 510g(2v—3) =logx—logc
thatis, —%10g(vv2v—3) =logx—logc
thatis, log(vy/2v—-3) = —3logx+3loge = —logx’ +logc’
thatis,  log(x’vv/2v—3) = logc>.
Hence x3v(q/2v—3) = c3.
Put v=X. Then x3z 2—y—3=c3
X x\ x
thatis, xzy Q—?, =3 (or) xy112w—3x2 = .
V x

This is the general solution of the given equation.

8. Problem : Solve (x? +y%)dx = 2xy dy.

Solution : The given equation can be written as

dy _x+y
dx 2xy

(D)
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which is ahomogeneous equation, since the numerator and denominator on the right are homogeneous functions

each of degree 2. Puty=vx. Then P v+xﬂ-
dx dx
Therefore, (1) becomes
d 2A+v7) 1+ —v?
v+x_v=x(2v)= Y sothatxﬂ=1v.
dx 2x°v 2v dx 2v
2v dx
Hence, 2v dv = ax so that j—zd" = j_
1-v? X 1=y *

thatis, —log(1—v?)=logx+logc
sothat log[xc(1—-v?)] =0 = log]l.

Hence xc(1-1v?)=1

thatis, c(x*—)?) = x (since v = Xj
X

which is the general solution ofthe given equation.
9. Problem : Solve xy°dy —(x3 + y%)dx = 0.

Solution : The given equation can be written as

dy x+ y3
dx 2 (1)
which isahomogeneous equation.
Put y=vx. Then ﬂ = v+xﬂ.
dx dx
3
Therefore, (1) becomes v+ )cﬂ = Ity
dx v2
1 dx
sothat xﬂ =— (or) vidv = =,
X V) X

3
Therefore, jvzdv = j@ sothat — = logx + logc
X 3

3
thatis, 3)7_3 = logx + logc (or) y°=3x%log (cx)
X

which is the general solution ofthe given equation.
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2 2
10. Problem : Solve ﬂ =X Ty .
dx 2x?

Solution : The given equation is a homogeneous equation. Puty=vx. Then ] =

X

dv  1+v2
becomes v+x— = ,
dx 2

thatis, 2xdv=(1+v>—2v)dx. Separating variables, we have

2dv. dx

=12 x’

Integrating, we get

——=logx +c.
y—
But v=l,so
X
2 =2 -2x  2x
v—1 X—l y—Xx xX—y
X
Hence =logx +c
X=y

sothat 2x = (x—y) (logx +c) which is the general solution of the given equation.

11. Problem : Solve xsec(zj- (vdx +xdy) = ycosec(zj - (xdy—ydx)
X X

Solution: The given equation can be written as

xsec Y. y+)cﬂ = ycosec Y. xﬂ—y
X dx X dx
SO that Xﬂ . (xseC(lj_ yCOSCC(ljj = —y (ycosec(l}+xsec(ljj
dx X X X X
p ycosec(y)+xsec(y)
that s, D2 al al

dx o —XSGC(yJ+yCOSCC[y)
X X

337

.. (1)

v+x§ so that (1)

X

(D

which is ahomogeneous equation, since the numerator and denominator on the right are homogeneous functions

each of degree 2.
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dy dv
vHx —-
dx dx

Therefore, (1) becomes

Put y=vx. Then

vVtx— = -
VCosy —sin v

dv VY COSECV +secV ) ycosv+sin v
v = _—
dx

VCOSECVY —SECV

dv 2vsinvy
Hence, x—=——7"-—
dx vcosv—sinv

thatis, (VCOSV._SIHV}Z _2@
ysinv X

Integrating, we get

VCOSVY— SlIlV
f dv —2j
VSIHV

thatis, J‘Cf)sv dv — J‘ﬂ = 2logx+logc.
sinv %

Therefore, logsinv—Ilogv =logx2+logc

sinv

thatis, log( } = log(cx?) sothat SV _ 2

%

thatis, sjn(l) = cxy (since V= X] which s the general solution of the given equation.
X X

12. Problem : Give the solution of x sir? L ax = ydx—xdy which passes through the point (1, g)
X
Solution: The given equation can be written as

2)

y—xsin” =

(xsmzl - y)dx =—xdy gothat ﬂ X .. (1)
X dx X

which is ahomogeneous equation, since both numerator and denominator are homogeneous functions

eachofdegree 1.

Put y=vwx. Then Q:H.xﬂ
dx dx
dv .2
sothat(1)becomes V+Xx— =v—sin- .
dx
Therefore, xﬂ = —gin’v
dx
) dv dx
thatis, ——/ >3~ = —-
sin” v X
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. dv dx
Integrating, we get -— = |—
sin“v X

thatis, J'—cosecz vdv = logx + c.

Hence, cotv=Ilogx+c or cot(lj = logx + ¢

X

. . . I i
Since this passes through the point (1, Z) , cot i ¢ sothatc=1.

Therefore from (2), the required particular solution is cot(z] = logx + 1.
X
13. Problem : Solve (x3 —3xy?)dx + (3x*y —3°)dy =0.
Solution: The given equation can be written as
dy _ x> - 3xy2
dx y3 ~3x2 y
Therefore, the given equation isahomogeneous equation.
Put y=vx. Then v+x Ll = @ so that (1) becomes
dx dx
v 1-3v?
VEX— = .
dx -3y
dv 1= vi-1 . d
Therefore, X— = = T so that Svov 3 dv = i
dx v =3v 3v—v v+DHv-DH("+1) X

1 1 2v
+ —
20+ 2= v+l

thatis [ }dv = & (by partial fractions).
X
Integrating, we get

%log(v+1) + %log(v—l) - log(v2 +1) = logx+logc

. v+1av-1 Vi -1
thatis, log —— | = log(cx) sothat — =cx
vo+1 vi+1
2
(or) v—_lzczxz.
(v +1)?

v
Since y=—, y?*—x*=c*(?+x?)
X

whichis therequired general solution.
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I. 1. Expressxdy—ydx=+/x>+y?* dx inthe form F(l) Y

II.

I11.

2.

3.

Exercise 8(¢)

X dx’

Express (x— yTan‘ledx + xTan™ Xdy = 0 inthe form F(X) =
X X

X

b

Express xﬂ = y(logy — log x +1) inthe form F(X) .
dx x dx

Solve the following differential equations.

1.

11.

13.

ay _ X7y 2. (2+)3)dy = 2xy dx
dx x+y
2 2
ﬂ = _(x—-l_?’y) 4. yzdx+(x2—xy)dy=()
dx 3x2 +y2
2
ﬂ: (r+) 6. (x*=yH)dx—xydy=0.
dx 2x2
(2y —2xyH)dx = (x> = 3x%)dy 8. 2 dx+(x2—xy+yH)dy=0
2
02 = 2xp)dx + (2xy = x2)dy =0 10. @Y _ >
dc« x x
xdy — ydx = x* + y*dx 12. 2x—y)dy=Qy—x)dx
2
2 2.4y dy _y . Y
XT=y)— =x 14, 2— = =4+ —
( Y )dx Y dx X x2

. Solve: (1+e*)dx + eX/y(l —ﬁ)dy =0.
y

. d .
Solve: xsin 22 = ysml - X.

x dx X

Solve: x dy = (y+xcos2 X]dx.
X

Solve: (x—ylogy+ylogx)dx+x(logy—logx)dy=0.
Solve: (y dx + xdy)xcosl =(xdy - ydx)ysinz.
X X

_J 2y

d
Find the equation ofa curve whose gradient is d—y == —-Ccos"—,
X x X

where x> 0, y>0and which passes through the point (1, g)

day
dx’
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8.2(¢c) Non-Homogeneous Differential Equations

Differential equations ofthe form

dy  ax+by+c
dx ax+by+c - (1)

wherea, b, c, a’, b’,c'are constants and ¢ and ¢'are not both zero are called non-homogeneous equations.

Wereduce (1) to ahomogeneous equation by suitable substitutions forxand y.

We explain three methods (in case (1), case (ii) and case (iii)) of solving (1) depending on the nature of

coefficients of x and y in the numerator and denominator of the R.H.S. of (1).
Case(i)

dy ax-dy+c
Suppose that b=—a’. Then (1) becomes dx = m-
Therefore, (a’x+b'y+c")dy—(ax—a'y+c)dx =0
thatis, a'(xdy+ydx)+bydy—axdx+c'dy—cdx =0
2

2
thatis, a'd(xy) + b’d(%} - m(%} +¢'dy - cd = 0.

. , X,
Integrating, we get a xy + b STy +cy—cx=k

which s therequired solution.

8.2(¢)(i) Note: Inthe above case solution can be obtained by integrating each term after regrouping.

8.2(c)(ii) Example : Letussolve @ = M
dx x=Ty-3

Here b=—1=-a'. Hence we can solve by case(i). Now (x—7y—3)dy —(3x—y+ 7)dx=0.
Therefore, (xdy+ydx)—Tydy—3dy—3xdx—"Tdx=0

X

2 2
thatis, d(xy) —7d(y?)—3dy—3d[ 5 ]—7dx = 0.
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Integrating, we get
2 2

7y —3y—3%—7x =c

2
(or) 2xy—Ty*—6y-3x*—14x=2c
which is the required solution.

.x);_

’ ’7

Case(ii) : Suppose that a_b_ m(say).
a

Then (1) becomes
dy  ax+by+c
de 1 (ax+by)+c’
m
Put ax+by=v. Then a+bﬂ = L4 .
dx dx
Therefore, dy _1fdv _ a
dx b\ dx
1(d +
sothat (2) becomes i e A
b\ dx 1% ’
—+c
m
Therefore, dv _ bmv+o) +a
dx v+c'm
thatis, vrem dv = dx
bm(v+c)+a(v+c’m)

which can be solved by variables separable method.

8.2(c)(iii) Example : Weshall solve & = X=Y*+3
dx  2x-2y+5

Herea=1, b= -1a'=2, b' =-2 and hence
a b 1

a b2
Therefore, we can solve the equation by case(ii).
Put x—y = v. Then 1—ﬂ = v
dx dx
so that the given equation becomes
_dv _ v+3
dx 2v+5

) dv v+2
thatis, — =

dx  2v+5

Mathematics - IIB
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sothat dx = 2V+5dv: 2+ ! dv.
v+2 v+2

Integrating, we get
x=2v+log(v+2)+c
thatis, x=2(x—-y)+log(x—y+2)+c

which is the required solution.

8.2(c)(iv) Note : If b=—a' with i, = 5, then the given equation can be solved easily by using case (i)
a

rather than case (i1).
Case(iii) : Supposethat b # —a’ and% # g
Thentaking x = X+ A, y = Y +k, where X and Y are variables and /4 and k are constants, we get
dy dY
dx  dX’
Hence (1) becomes

ﬁ _a(X+h)+b(Y+k)+c

dX d(X+h)+b(Y+k)+c

dyY aX+bY + (ah+ bk + ¢)

thatis, dX  dX4VY + (dh+bk+C) - ()

Now choose constants 4 and & such that
ah +bk +c =0 ... (11)
and ah+b'k+c'=0 ... (ii1)

Since ﬁ, # 5, we can solve (i1) and (iii) for /# and k. Hence (1) becomes

a
dyY aX+bY

dX dX+bY
which isahomogeneous equation in X and Y and hence can be solved by homogeneous equation method, that
isby putting Y=VX.
8.2(c)(v) Example: Weshall solve (2x+y+3)dx = 2y+x+1)dy.

The given equation can be written as
dy 2x+y+3 )
dx 2y+x+1 - (1)
b

Here a=2, b= 1, a'=1, b’ =2. Hence, b # —a’ and — # 3
a
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Therefore, the given equation can be solved by case (ii1).

Put x= X+h, y = Y+k in(i). Then Z_y:% and 9Y _ 2X+Y+2h+k+3 ... (ii)
X

dX 2Y+X+2k+h+1

Now choose /2 and k such that

2h+ k+3=0and h+2k+1=0.

} 1

Solving them for zand k, we get h = —%, k = 3
q b dy _2X+Y
ence (ii) becomes X oY+ X ... (111)

which isahomogeneous equation.

Put Y=VX. Then a = V+Xﬂ.
dX dX
Theref: ™y V+Xﬁ— 2+V
erefore, (i11) becomes X 2V+l
2
thatis, Xﬂ = 24-v7 and hence
dX 2V+1
2V+1 AV = 2dX
1+V)1-V) X
that s, 3 dv - 1 dv = 2dX.
2(1-V) 2(1+V) X

3 1
Integrating, we get —Elog(l—V) - Elog(1+V) = 2logX - logc

thatis, 3log(1-V) + log(1+ V) + 4logX = 2logc

(or)  log[1-V) 1+V)X*] =logc’
sothat X*(1-V)3(1+V)=c2

3
Since VZX,Weget X4[1—X] [1+Xj=c2
X X

thatis, (X+Y)(X-Y)’=c2
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Substituting for X and Y, we get,

3

5 1 5 1 ) 4 3_ 2

+ 24 y—= + 2 —y+-| = X+y+—|(x —y+2)y =c
(x 3 y 3)(x 3 y 3) c (or)( y 3) y

which istherequired solution.

Exercise 8(d)

I. Solvethe following differential equations.

. @ _(2x+5y-9) ). dy _Bx—2y+5
dx Sx+2y-4 dx  2x+3y+5
dx  2x+3y-5 dx

5. dy _x-y+2 6. d _2x—y+l
dx  x+y-1 dx  x+2y-3

I1. Solvethe following differential equations.
dy dy 4x+6y+5

. Qx+2y+3)—=x+y+1 2, —=—
o2y )dx Y dx 3y+2x+4

3. 2x+y+1)dx+(dx+2y—Ddy=0 4 Gy _ 2y+xtl

dx 2x+4y+3

5. x+y—-Ddy=(x+y+1)dx
III. Solvethe following differential equations.

dy 3y-Tx+7 dy _ 6x+5y-7

1. = 2. =
dx 3x-Ty-3 dx 2x+18y-14

3. 4y 10x+8y-12 4. (x—y—2)dx+(x—2y—3)dy=0
dx  Tx+5y-9

5. x=py)dy=(x+y+1)dx 6. 2x+3y—8)dx = (x+y—-3)dy
dy  x+2y+3 dy _2x+9y-20

7. L= =7 - 8. =
dx  2x+3y+4 dx  6x+2y-10

8.2(d) Linear Differential Equations

A differential equation is said to be linear if the dependent variable and its derivatives appear only in first
degree and their products do not occur in the equation.
d n d n-1 y

8.2(d) (i) Alinear differential equation of " orderis ofthe form y 3) +P, PRz
X X

dn72 y
dxn—Z

+P, +...+Py=Q,

whereP,P,, ..., P, Qareeither constants or functions x.
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Any linear differential equation of first order is of the form

dy
dx

where P, Q are constants or functions ofx only.

+ Py =Q,

8.2(d)(ii) Method of solving a linear differential equation of first order
Consider any linear differential equation of first order

dy
+P
S Thv=Q (1)
L . [Pax
Multiplying both sidesof (1) by ¢! , we get
dy ( [pax [ Pax [Pax
—\e +Pye =Qe
(") wpy ™=

from which it follows that
d [Pax [Pax
—\ye =Qe
z (y ) Q .

Integrating, we get

J-%(yefpdx)dx = J.Q efpdx dx

J' Pdx

IQ ef dx+c

Therefore,

The solution of %+Py Qs ye jQ eJ dx+c.

8.2(d)(iii) Note

1. The function eI " of x which makes the L.H.S. of (1) asthe differential coefficient of y ef " is called
the integrating factor and is usually denoted by I.F. The above solution can also be written in terms of L.F.

as (LF) = [ (QxLF)dx + c.

: . . d. .
2. Notethatdifferential equations ofthe from d_x +Px = Q, where Pand Q are constants or functions of
Y

yonly are also linear differential equations of first order in x. For such equations L.F. = eI * and the

solutionis

x(LF) = J.(QXI.F) dy + c.
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8.2(d)(iv) Solved Problems

Transformthe following two differential equations into linear form

1. Problem: xlogx?+y = 2logx -
X

Solution : Dividing both sides by x log x, we get ﬂ+ ! y= 2 whichisinthe form L +Py=Q.
dx xlogx X dx

2. Problem: (x+ 2y3)ﬂ =y.
dx
Solution : The given equation can be written as

d +2y° dx 1
ST T 2y” thatis, & _Cx= 2y? whichis in the form ?+ Px = Q (linearinx).
y

dy y y dy 'y
Find LF. of the following two differential equations by transforming them into linear form :

3. Problem: (cos x)% + ysin x = tan x.

Solution : The above equation can be written as % + (tanx)y = sec x.tan x.
Therefore, P=tanx and hence _[de = ~l-tan xdx =log secx sothat
LF = o/P# = logseer oy,
4. Problem : (2x—10y3)% +y=0.

Solution : The given equation can be written as
dx 10y* —2x 2

— == T x+10y°
dy y y
dx 2 )
(or) — + — . x =10y (linearinx).
dy 'y
dey J.gdy
Therefore, LF=¢' ~ =¢ > =y

d
5. Problem : Solve (I+ xz)d—y +2xy-4x2=0.
X

Solution : The given equation can be written as
dy 2x 4x*
-t 2V = 2
dx 1+x I+x

(D)
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2x 4x?
H P:—’ Q=
ere 1+ x? 1+ x?

2x

|—==5dx 2
1+x — elog(l+x ) =1+X2 .

Hence LF. = eI Pdx =

General solution of (1) is givenby y(I.F)= J (QxLF)dx+c (by 8.2(d) (iit))

2 3

j(l+x2)dx+c - 4%+c

+x°

4x
Therefore y(1+x2) = J.( N

thatis, 3y(1+x%)=4x>+3cwhich s the required solution.
6. P . 1 dy x _ (l—ne®
. Problem: Solve — =2 + ye* =¢ .
X dx

Solution : The given equation can be written as

d o
D4 xety = x Ve (D)
dx

Here P=xe‘and Q = x e™9¢ .

Therefore, LF. = eI xetdr _ abe’,

General solution of (1)is given by y(I.F)= f (QxLF)dx+c (by 8.2(d) (ii1))
y e e = .[xdx +c

2
. _1\ X X x
thatis, ye™ ™M =Z_4c (o) 2y =24 2c

which istherequired solution.

d
7. Problem : Solve sinzx.d—y + y = cot x.
X

Solution: The given equation can be written as

d_y + y cosec’x = cosec’x. cot x .. (1)
X

2

Here P =cosecZx and Q= cosec?x. cot x.

2
cosec”xdx —cot
e_[ = g Cotx,

Therefore, 1.F=
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General solution of (1)is givenby y(I.F)= I (QxLF)dx+c (by 8.2(d) (iii))
y e O = J.e_“’“‘ cosec’x cot xdx +c.

Put —cotx=t. Then dr= cosec? x dx.
Therefore, (2) becomes
ye' =—I te dt+c
=—(t-1e'+te
Hence ye % = —(—cotx—1)e ¥ +¢
= (1+cotx)e ¥ +¢
which istherequired solution.

8. Problem : Findthe solution of the equation
x(x=2) @ —2(x=1y =x*(x=2)
dx
which satisfies the condition that y = 9 when x = 3.

Solution : The given equation can be written as
dy 5 =D
dx x(x 2)
(x=1)

P=-2 and Q=x’
Here (x—2) Q .

J' CaE (x— 1)
Therefore, I.F = e 2)

log)c()c—2) — 1
x(x=2)"

General solution of (1)is givenby y(I.F)= I (QxLF)dx+c (by 8.2(d) (iit))

= e

2
Y

= J. X dx+C
x(x—2) x(x—-2)

dx+C =J.

X —

2
= I(l + x_zjdx+C = x+2log(x—2)+c.

Y
x(x—2)

Therefore, = x+2log(x—2)+c

which is the general solution of the given equation. Takingx=3 andy=9in(2), we get

c=0.Hence y=[x(x—2)] [x+2log(x—2)] istherequired solution.
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9. Problem : Solve (1+)?)dx=(Tan"'y—x)dy

Solution : The given equation can be written as

dx X Tan'y
-t 2 = 2
dy 1+y I+y
whichislinearin x.
1 Tan™
Here P= 5. Q= 2y so that
I+y I+y
d
[

IF. = e 1+y2 — eTan_ly.

General solution of (1) is givenby y(I.F)= f (QXLF)dx+c

Nowput Tan"'y =¢. Then
1+ y2
Hence (2) becomes

xe' =It ddt+c=e (-1 +c

sothat x ™Y = Ty (Tan~ly 1) 4c

which istherequired solution.

Exercise 8(e)

Mathematics - IIB

(by 8.2(d) i)

I. Findthel.F.ofthe following differential equations by transforming them into linear form.

1. xﬂ—y:2x236022x. 2. y@ —x =2y
dy dy
II. Solvethe following differential equations.
L. d—y+ytanx=cos3x 2. ﬂ+y secx = tanx
dx dx
d
3. ﬂ—ytanx=exsecx. 4. x—y+2y=10gx
dx dx
5. (eat) Dy =ty 6. Wy 2 _ o
dx dx x
7 4 o1 8. xP iy = 4xet
dc 1+x*7  (1+x%)? dx

(D)

)
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I11.

dy 3x? 1+ x2 dy
9. —+ = 10. ——y=-2¢"
dx 1+x° Y 1+x° dx Y ¢
11. (1+x2)ﬂ+y:Tan_1x 12. Q+ytanx=sinx.
dx dx
Solve the following differential equations.
1. cosx.?+y sin x = sec” x 2. secx.dy=(y + sinx)dx
X
d
3. xlogx.ﬂ+y=210gx, 4. (x+y+) F=1
dx dx
d
5. x(x =1 ﬂ—y=x3(x—1)3 6. (x+2y) 2 =y
dx dx
d
7. (A=x%) Zp2xy = x1-42 8. x-1) P _(x—2)y=r@x-1)
dx dx
9. Q(xz v +xy) =1 10. ﬂ+xsin 2y = x> cos® y
dx dx

I1. y2+(x—l) @ =0.

y | dx

®
0.0

0,
0'0

[ Key Concepts]

Variables Separable Method
Ifthe differential equation is of the form

Ax) dx + g(y) dy =0,
thenitssolutionis | f(x) dx+[ g(y) dy =0.

Homogeneous Equations

Ifthe differential equation is of the form ) = M, where fand g are
dx  g(x,y)

homogeneous functions of x and y of same degree, then we put y=vx and bring it to the form

o) dv = @ and then we integrate.
X

Non Homogeneous Equations

Letthe differential equation be of the form dy e by+c

dx  dx+by+c’
wherea, b,c,a’, b’, ¢’ are constants.
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J \
Case(i):If b=—a’, thenitssolution canbe obtained by integrating term by term after regrouping.

Case (ii) : If i, _b_ m, thenweput ax+ by=v andbringitto the form
a

O(v) dv=dx and then we integrate.

Case (iii) : If i, ez g, then we put x=X+h, y=Y +k(h, kare obtained by solving
a

ah+bk+c=0, d'h + bk + ¢ = 0) andbringittothe form 1 = X+
dX+bY

Then weput Y =VXandbringit tothe form ¢(V)dV = % and then we integrate.

+« Linear Differential Equations

Ifthe differential equation is of the form
dy
— +Py=Q,
Y=

thenitssolutionis y eJde = C+J'Q ejpdx dx -

Historical Note

The study of differential equations began soon after the invention of the Differential and Integral calculus,
to which it forms a natural sequel. A differential equation occurred for the first time in 1693 in the work of

Leibnitz(whose account of the differential calculus was published in 1684).

In the next few years the progress was rapid. In 1694-97, Johann Bernoulli explained the method of
“Separating the Variables”,and he showed how to reduce ahomogeneous differential equation of the first
order to one in which the varibles are separable. He applied these methods to problems on orthogonal

trajectories. Integrating Factors were introduced by Eulerin 1734 and (independently ofhim) by Fontaine

7

and Clairaut, though some attribute them to Leibnitz.
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Answers

Exercise 8(a)

L 1.2 2.1
I 1. (i 93—4 D gy~ i x—d2y+2ﬂ— =0
SRR dx xydx Y o dx*  dx w
d’y . dy d*y
——2k—+k 0 v) —5+n°y=0
(iii) o TKY= ) —Z+my
2 () xPry=0 (i) xyd_zhx dy z_yﬂzo
dx dx* dx dx
d’y _dy 2d’y o dy
mL. 1. ——7 +12y=0 i) xP L —2x24+2y=0
@ dx* dx - ® dx* dx Y

2
d?y dy ’ dy . 2d7y dy . _
(iii) xy?+x(—j —y—==0 @iv) x P +2xdx 2y=0

dx dx
dy .. d? dyY
2. () Y -xT=2xy— i) 2422+ 2| =0
dx dx*> | dx
2
dy dy
11 — | +2x—=
( )y[dxj dx Y
Exercise 8(b)
I. 1. Sin'x+Sin"'y=¢
2. x*=cy
IL 1. Tan"'y = Tan'x+Tan"'¢ 2. eV =t +c
2
3. ¢ =k(y+1) (1+e™) 4, ey:ex+?+c

5. sinx siny=c

6. xV1+x + yy1+ y* +log [(x+\/1+x2) (y+ 1+y2)} =




354

111

11

11.

13.

S+x=—2

1-5y

(1 +x3) (1 +)2) =cx?
DA+ =c

tan(x +y)—sec(x+y)=x+ ¢

Tan™ (%} +Tan™ [

xX—=y —%sin[Z(x+ V)] =-c

ky3 ex/y — x2

xy(y—x)=c

cx2=y+ [x2+y2

x?+2y%(c+logy)=0

8.

2.

4.

-

N

10.

12.

14.

y—x=log

E ‘
y

_ 3
-V =e" . k

cy=cosh? x

Exercise 8(¢c)

Mathematics - IIB

y -1( Y
= Tan | = | -1
dy _ x (xj
1

dx Tan™ (y
X

y=2x=kx?y

(x+y)P=clx-y)

0 =)’

)



Differential Equations

COSX
L 1. x+ye=k 2. kx=e U
tan(1)=logx+c 4. ylogy+(x—-y)logx=y+cx
X
xycos(lj:c 6. tan(l)=l—log|x|
X X
Exercise 8(d)
L Y2 +6x2+5xy—4y—-9x=c 2. 4xy+3(x2+)?) - 10(x—-y)=k
Ay +3(x2+y) - 10(x+y) =k 4, 2xy+2y-3y2—x-2x2=k
LY =xP+2xy-2y—dx=c 6. Y —x*+xy-3y—-x=c
3
II. 1. 6y—3x+log(3x+3y+4)=c 2. y—2x+§log(24y+16x+23)=k
. 2yt+x+log2x+y—-1)=k 4. (8y—4x)+log(dx+8y+5)=c
. x—ytlog(x+y)=c
M. 1. (y—x+1)2@+x-1°=k 2. By-2x-12Q2y+x-2)=c

. (F =22 -2x-4y-2) = c{

. (x+y-1)2@+2x-3Y>=c

1
x—y\/E—«/E—l V2
x+y\/§+«/§—1

2y+1 1
2Tan!| 2270 = log|c* | x> +y* +x+y+—
2x+1 2

V3 log (Y? -2XY -2X?) +2 log {

Y-(1+3) X
Y-(1-43)X
where X=x—-1,Y=y-2.

2+3 2-43

3
log (+/3Y - X) —
> g ( ) 5

. 2x—y)=c(x+2y-5).

3 log(\/§Y+X) = \/EC, where X=x-1, Y=y+2
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II. 1.

hed

11.

. 1.

(O8]
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Exercise 8(e)

1 1
pa— 2. P—
X y
2y =xcos x +sin x cos? x + ¢ cos x
y(secx+tanx)=secx+tanx—x+c
2 2
ycosx=e +c 4. yx2=x—logx—x—+c
2 4
-1 -1 2X5
2 eTan X =eZTan Yie 6. x2 =" 4c
y Y 5
Y2+ 1)2=x+c 8. xy=xe*+c
3
y(l+x3)=x+?+c 10. y=e*+ce*
y=Tan 'x—1+c o Tanlx 12. ysecx=logsecx+c
1 3 . sin x
ysecx=tanx+§tan x+c 2. y=—(sinx+1)+ce
. ylogx=(logx)*+c 4. x=ke'—(y+2)
5 4
xy X x s
—=—-—+c 6. x= +
-1 5 4 XTI
y=v1-x> +c(1-x7) 8. yx—-1)=x*(x*~x+c¢)

1+x(y2—2+ce_y2/2):O 10. tany:%(xz—l)+ce_x2
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BOARD OFINTERMEDIATE EDUCATION
Syllabus in Mathematics Paper - II1B

To be effective from the academic year 2013-14

Name of Topic and Sub Topics No. of Periods
COORDINATE GEOMETRY
|
01. Circle
1.1  Equationofacircle - standard form - centre and radius - equation 08
ofacircle with a given line segment as diameter & equation ofa circle
through three non collinear points - parametric equations of a circle.
1.2 Position ofapoint in the plane ofa circle - power of a point- 06
definition of tangent-length oftangent.
1.3 Position ofastraight line in the plane of a circle- conditions
for a line to be tangent- chord joining two points on a circle- 06
equation ofthe tangent ata point on the circle- point of contact-
equation ofnormal.
1.4  Chordofcontact - pole and polar-conjugate points and conjugate 06
lines - equation of chord in terms of its mid point.
1.5  Relative position of two circles- circles touching each other 08
externally, internally common tangents -centers of similitude-
equation of pair of tangents from an external point.
34
02. System of Circles
2.1  Anglebetweentwo intersecting circles. 06
2.2 Radical axis of two circles- properties-common chord and 06

common tangent of two circles - radical centre.

12
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03. Parabola

3.1

3.2

Conic sections -Parabola- equation of parabola in standard form-

different forms of parabola- parametric equations.

Equations oftangent and normal at a point on the parabola
(cartesian and parametric) - conditions for a straight line to

be tangent.

04. Ellipse

4.1
4.2

Equation of ellipse in standard form-Parametric equations.

Equation oftangent and normal ata point on the ellipse
(cartesian and parametric)-condition for a straight line to

be tangent.

05. Hyperbola

5.1  Equationof hyperbola in standard form-Parametric equations.

5.2 Equations oftangent and normal ata point on the hyperbola
(cartesian and parametric)- conditions for a straight line to be
atangent- Asymptotes.

CALCULUS

6.1  Integrationasthe inverse process of differentiation-
Standard forms -properties of integrals.

6.2  Method of substitution- integration of Algebraic, exponential,

logarithmic, trigonometric and inverse trigonometric functions.

Integration by parts.

08

07

15

06
07

13

04
04

08

04

14
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6.3  Integration by Partial fractions method. 05
6.4  Reduction formulae. 05
28
07. Definite Integrals
7.1  Definite Integral asthe limit ofa sum 03
7.2 Interpretation of Definite Integral as an area. 03
7.3 Fundamental Theorem of Integral Calculus (without proof). 04
7.4  Properties. 04
7.5  Reduction formulae. 06
7.6 Application of Definite integral to areas. 04
24
08. Differential Equations
8.1  Formation of differential equation-degree and order of 02
an ordinary differential equation.
8.2  Solvingdifferential equation by
a) Variablesseparable method. 03
b) Homogeneous differential equation. 03
¢) Non-Homogeneous differential equation. 04
d) Lineardifferential equations. 04
16

TOTAL

150
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BOARD OF INTERMEDIATE EDUCATION, A.P.
Mathematics - 1I1B

Model Question Paper (w.e.f. 2013-14)

Time: 3 hrs Max. Marks:75

Note: This Question paper consists of three sections A, Band C.

SECTION -A

I. Very Short Answer type Questions
(i) Answer all Questions

(ii) Each Question carries 2 marks 10 x 2=20

1. If ax*+ bxy+3y*— 5x+2y —3=0represents a circle, find the values of aand b. Also find its radius

and centre.
2. State the necessary and sufficient condition for /x + my+n=0to be a normal to the circle
x2+y2+2gx+2fp+c=0.
3. Findthe angle between the circles x>+3% — 12x— 6y +41=0and x%+)?+4x+6y—59=0.
4. Find the equation ofthe parabola whose focusis S(1,—7) and vertex isA(1,-2).

2 2
5. Findtheangle between the asymptotes ofthe hyperbola x_2 _ 2 g
a

b

1
6. Evaluate J.(x-l-3)—xm dx

sin* x

6

7. Evaluate I
CoS° X

dx

1 2
8. Evaluatejl X

de
0

x“+1
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10.

II.

11.

12.

13.

14.

15.

16.

17.

Mathematics - IIB

¥
% sin’ x —cos? x
Evaluate J. 2= 7 777 T dx

9 sin® x + cos> x

Find the order and degree of the differential equation [d—zy - (ﬂj 3 }6/5 =6y.
dx*  \dx
SECTION-B
Short Answer type Questions
(i) Answer any five Questions
(ii) Each Question carries 4 marks 5x4=20

Show that the tangentat (—1,2) of the circle x2+)?—4x—8y+7=0 touches the circle

x2+y2+4x+6y=0. Also find its point of contact.

Find the equation of the circle passing through the points of intersection of the circles
x¥2+)2—8x—-6y+21=0, x*+)?-2x-15=0and (1, 2).
Find the length of major axis, minor axis, latus rectum, eccentricity of the ellipse 9x2 + 16y* = 144,

2 2

Show thatthe point of intersection of the perpendicular tangents to an ellipse x_2 + Z—z =1,(a>b) lies
a

onacircle.

Find the equations of the tangents to the hyperbola 3x? —4)2= 12 which are (i) Parallel to (ii) Perpendicular
totheliney=x-7.

Find the reduction formula for | sin” x dx

O o [a

Solve: (1+3?)dx=(Tan"ly—x)dy
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SECTION-C

III. LongAnswer type Questions

() Answer any five Questions

(ii) Each Question carries 7 marks 5x 7=35
18. Show thatthe points (1, 1), (-6, 0),(-2,2) and (-2,—-8) are concyclic.
19. Findthe directcommon tangents to the circles
x2+32+22x—4y-100=0, x2 +y* — 22x + 4y + 100 =0.
20. If y,, y,, yyare the y-coordinates of the vertices of the triangle inscribed in the parabola y?=4ax

then show that the area of the triangle is SL | (v = ¥2)(¥, = ¥3)(¥3 — ¥) | square units.
a

21. Evaluate j DB 0 dx

4sin x+5cos x

22. Evaluate

dx
I(1+x)\/3+ 2x — x*

tlog(1+ x)
23. Evaluate_[()g—z)cdx
0 1+ x

d 2x+y+3
24. Solve:—y=L
dx 2y+x+1
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